【题目】(1)(操作发现)
如图1,将△ABC绕点A顺时针旋转50°,得到△ADE,连接BD,则∠ABD= 度.
(2)(解决问题)
①如图2,在边长为的等边三角形ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC的面积.
②如图3,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,若PB=1,PA=3,∠BPC=135°,则PC= .
(3)(拓展应用)
如图4是A,B,C三个村子位置的平面图,经测量AB=4,BC=3,∠ABC=75°,P为△ABC内的一个动点,连接PA,PB,PC.求PA+PB+PC的最小值.
【答案】(1)65;(2)①;②2;(3)PA+PB+PC的最小值为.
【解析】
(1)【操作发现】:如图1中,根据旋转的性质可得AD=AB,由等边对等角和三角形内角和定理可求出答案;
(2)【解决问题】
①如图2中,将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,只要证明∠PP′C=90°,利用勾股定理即可解决问题;
②如图3中,将△CBP绕着点C按顺时针方向旋转90°,得到△CAP′,根据旋转的性质可以得到∠P′CP=∠ACB=90°,进而得到等腰直角三角形,求出PP'即可得出答案;
(3)【拓展应用】
如图4中,将△APB绕BC顺时针旋转60°,得到△EDB,连接PD、CE.得出∠CBE=135°,过点E作EF⊥CB交CB的延长线于点F,求出CF和EF的长,可求出CE长,则答案可求出.
(1)【操作发现】
解:如图1中,
∵△ABC绕点A顺时针旋转50°,得到△ADE,
∴AD=AB,∠DAB=50°,
∴=65°,
故答案为:65.
(2)【解决问题】
①解:如图2中,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,
∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,
∴PP′=AP,∠AP′P=∠APP′=60°,
∴∠PP′C=90°,∠P′PC=30°,
∴PP′=PC,即AP=PC,
∵∠APC=90°,
∴AP2+PC2=AC2,即(PC)2+PC2=()2,
∴PC=2,
∴AP=,
∴S△APC=APPC=××2=.
②如图3,将△CBP绕着点C按顺时针方向旋转90°,得到△CAP′,
∵CP′=CP,∠P′CP=∠ACB=90°,
∴△P′CP为等腰直角三角形,
∴∠CP'P=45°,
∵∠BPC=135°=∠AP'C,
∴∠AP′P=90°,
∵PA=3,PB=1,
∴AP′=1,
∴PP′===2,
∴PC===2.
故答案为:2.
(3)【拓展应用】
解:如图4中,将△APB绕B顺时针旋转60°,得到△EDB,连接PD、CE.
∵将△APB绕B顺时针旋转60°,得到△EDB,
∴∠ABP=∠EBD,AB=EB=4,∠PBD=60°,△BPD为等边三角形,AP=DE
∴∠ABP+∠PBC=∠EBD+∠PBC,PB=PD
∴∠EBD+∠PBC=∠ABC=75°,根据两点之间线段最短可得PA+PB+PC=DE+PD+PC≤CE,即PA+PB+PC的最小值为CE的长
∴∠CBE=135°,
过点E作EF⊥CB交CB的延长线于点F,
∴∠EBF=45°,
∴,
在Rt△CFE中,∵∠CFE=90°,BC=3,EF=2,
∴=
即PA+PB+PC的最小值为.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,四边形为正方形,点的坐标为,动点沿边从向以每秒的速度运动,同时动点沿边从向以同样的速度运动,连接、交于点.
(1)试探索线段、的关系,写出你的结论并说明理由;
(2)连接、,分别取、、、的中点、、、,则四边形是什么特殊平行四边形?请在图①中补全图形,并说明理由.
(3)如图②当点运动到中点时,点是直线上任意一点,点是平面内任意一点,是否存在点使以、、、为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知抛物线(a<0)与x轴交于A、B两点(点A在点B左侧),与y轴负半轴交于点C,顶点为D,已知:S四边形ACBD=1:4.
(1)求点D的坐标(用仅含c的代数式表示);
(2)若tan∠ACB=,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形△ABC中,∠BAC=120°,AB=3.
(1)求BC的长.
(2)如图,点D在CA的延长线上,DE⊥AB于E,DF⊥BC于F,连EF.求EF的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共“金山银山,不如绿水青山”.某市不断推进“森林城市”建设,今春种植四类树苗,园林部门从种植的这批树苗中随机抽取了4000棵,将各类树苗的种植棵数绘制成扇形统计图,将各类树苗的成活棵数绘制成条形统计图,经统计松树和杨树的成活率较高,且杨树的成活率为97%,根据图表中的信息解答下列问题:
(1)扇形统计图中松树所对的圆心角为 度,并补全条形统计图.
(2)该市今年共种树16万棵,成活了约多少棵?
(3)园林部门决定明年从这四类树苗中选两类种植,请用列表法或树状图求恰好选到成活率较高的两类树苗的概率.(松树、杨树、榆树、柳树分别用A,B,C,D表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=8,O是AD的中点,以O为圆心在AD的下方作半径为3的半圆O,交AD于E、F.
思考:连接BD,交半圆O于G、H,求GH的长;
探究:将线段AF连带半圆O绕点A顺时针旋转,得到半圆O′,设其直径为E'F′,旋转角为α(0<α<180°).
(1)设F′到AD的距离为m,当m>时,求α的取值范围;
(2)若半圆O′与线段AB、BC相切时,设切点为R,求的长.
(sin49°=,cos41°=,tan37°=,结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与轴交于点、两点,与轴交于点.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.
简单应用:
(1)在图①中,若AC=2,BC=4,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图4,△ABC中,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,且点E在直线AC的左侧时,点Q为AE的中点,则线段PQ与AC的数量关系是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com