精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,为锐角,点为射线上一动点,连接.以为直角边且在的上方作等腰直角三角形.

1)若

①当点在线段上时(与点不重合),试探讨的数量关系和位置关系;

②当点在线段的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;

2)如图3,若,点在线段上运动,试探究的位置关系.

【答案】1)①CFBD,证明见解析;②成立,理由见解析;(2CFBD,证明见解析.

【解析】

1)①根据同角的余角相等求出∠CAF=BAD,然后利用边角边证明△ACF和△ABD全等,②先求出∠CAF=BAD,然后与①的思路相同求解即可;

2)过点AAEACBCE,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=EAD,然后利用边角边证明△ACF和△AED全等,根据全等三角形对应角相等可得∠ACF=AED,然后求出∠BCF=90°,从而得到CFBD

解:(1)①∵∠BAC=90°,△ADF是等腰直角三角形,
∴∠CAF+CAD=90°,∠BAD+ACD=90°
∴∠CAF=BAD
在△ACF和△ABD中,

AB=AC,∠CAF=BADAD=AF
∴△ACF≌△ABD(SAS)
CF=BD,∠ACF=ABD=45°
∵∠ACB=45°
∴∠FCB=90°
CFBD
②成立,理由如下:如图2


∵∠CAB=DAF=90°
∴∠CAB+CAD=DAF+CAD
即∠CAF=BAD
在△ACF和△ABD中,

AB=AC,∠CAF=BADAD=AF
∴△ACF≌△ABD(SAS)
CF=BD,∠ACF=B
AB=AC,∠BAC=90°
∴∠B=ACB=45°
∴∠BCF=ACF+ACB=45°+45°=90°
CFBD

2)如图3,过点AAEACBCE


∵∠BCA=45°
∴△ACE是等腰直角三角形,
AC=AE,∠AED=45°
∵∠CAF+CAD=90°,∠EAD+CAD=90°
∴∠CAF=EAD
在△ACF和△AED中,

AC=AE,∠CAF=EADAD=AF
∴△ACF≌△AED(SAS)
∴∠ACF=AED=45°
∴∠BCF=ACF+BCA=45°+45°=90°
CFBD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(12)B(31)C(2,-1)

1在图中作出△ABC 关于 y 轴对称的△A1B1C1并写出坐标;

2)求出△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,点在射线ON上,点在射线OM上,均为等边三角形,若,则的边长为(  )

A.16B.64C.128D.256

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.

1)作出与ABC关于x轴对称的A1B1C1

2)将ABC向左平移4个单位长度,画出平移后的A2B2C2

3)若在如图的网格中存在格点P,使点P的横、纵坐标之和等于点C的横、纵坐标之和,请写出所有满足条件的格点P的坐标(C除外).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图中,平分于点,在上截取,过点于点.求证:四边形是菱形;

如图中,平分的外角的延长线于点,在的延长线上截取,过点的延长线于点.四边形还是菱形吗?如果是,请证明;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是菱形,上,延长线上,相交于点,若的长为,则菱形的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湘一追逐梦想数学兴趣小组编了一个·远方的计算程序,规定:输入数据时,若输出的是代数式称为,若输出的是等式称为远方”.

回答下列问题:

(1)当输入正整数时,得到远方,若远方,求证是完全平方式.(温馨提示:对于一个整式,如果存在另一个整式,使的条件,则称是完全平方式,比如是完全平方式.)

(2)当输入时,求远方的正整数解.

(3)若正数互为倒数,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“鄂尔多斯,温暖全世界”这句广告语及上乘的质量使鄂尔多斯的羊绒制品闻名中外,我市某羊绒企业的工厂店在销售中发现:某种羊绒围巾平均每天可售出件,每件可获利元;若售价减少元,平均每天就可多售出件;若想平均每天销售这种围巾盈利元,并使顾客得到更大的实惠,那么每件围巾应降价多少元?若想获利最大,应降价多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电器超市销售A B两种型号的电风扇,A型号每台进价为200元,B型号每台进价分别为150元,下表是近两天的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一天

3

5

1620

第二天

4

10

2760

(进价、售价均保持不变,利润=销售收入-进货成本)

(1)AB两种型号的电风扇的销售单价;

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?

(3)(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

同步练习册答案