【题目】如图,已知A是函数y=﹣ (x<0)图象上一点,B是函数y= (x>0)图象上一点,若OA⊥OB且AB=2,则点A的横坐标为______.
【答案】﹣2或﹣1.
【解析】
作AE⊥x轴于E,BF⊥x轴于F.设A(a,﹣),B(b,),则a<0,b>0.根据题意可知△BOF∽△OAE,所以,得a2b2=12,根据勾股定理 可知AB2=OB2+OA2=b2++a2+,整理得b2=15﹣3a2,根据a2b2=12得a2(15﹣3a2)=12,求出a的值即可.
如图,作AE⊥x轴于E,BF⊥x轴于F.设A(a,﹣),B(b,),则a<0,b>0.
∵∠AOB=∠OFB=∠AEO=90°,
∴∠BOF+∠AOE=90°,∠AOE+∠OAE=90°,
∴∠BOF=∠OAE,
∴△BOF∽△OAE,
∴
∴
∴a2b2=12,
∵AB2=OB2+OA2=b2++a2+,AB=2,
∴b2++a2+=20,
两边同乘a2b2,得12(b2+a2)+36a2+4b2=20×12,
化简整理,得b2=15﹣3a2,
∵a2b2=12,
∴a2(15﹣3a2)=12,
解得a=±1或±2,
∵a<0,
∴a=﹣2或﹣1.
故答案为﹣2或﹣1
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.
(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.
(2)画出△DEF关于直线l对称的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为( )
A. B. +1﹣ C. ﹣ D. ﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′.
(1)求∠DAD′的度数。
(2)当∠DAE=45°时,求证:DE=D′E;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,以点M(6,8)为圆心,2为半径的圆上有一动点P,若A(﹣2,0),B(2,0),连接PA,PB,则当PA2+PB2取得最大值时,PO的长度为( )
A. 8 B. 10 C. 12 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AE=CF,∠A=∠C,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A. ∠D=∠B B. AD=CB C. BE=DF D. ∠AFD=∠CEB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角△ABC中,∠ABC=90°,BC为圆O的直径,D为圆O与斜边AC的交点,DE为圆O的切线,DE交AB于F,且CE⊥DE.
(1)求证:CA平分∠ECB;
(2)若DE=3,CE=4,求AB的长;
(3)记△BCD的面积为S1,△CDE的面积为S2,若S1:S2=3:2.求sin∠AFD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD,AC分别交于点E,F,且∠ACB=∠DCE,tan∠ACB=,BC=2cm.以下结论:
①CD=cm; ②AE=DE; ③CE是⊙O的切线; ④⊙O的面积等于cm2.其中正确的结论有_____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判断∠D是否是直角,并说明理由.
(2)求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com