【题目】某校七年级共有800名学生,准备调查他们对“低碳”知识的了解程度.
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查七年级部分女生;
方案二:调查七年级部分男生;
方案三:到七年级每个班去随机调查一定数量的学生.
请问其中最具有代表性的一个方案是 ;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;
(3)在扇形统计图中,“比较了解”所在扇形的圆心角的度数是 .
(4)请你估计该校七年级约有 名学生比较了解“低碳”知识.
【答案】(1)三;(2)见解析;(3)108 ;(4)240.
【解析】试题分析:(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;(2)因为不了解为5人,所占百分比为10%,所以调查人数为50人,比较了解为15人,则所占百分比为30%,那么了解一点的所占百分比是60%,人数为30人;补全统计图即可;(3)用360°乘以“比较了解”所占百分比即可求解;(4)用总人数乘以“比较了解”所占百分比即可求解.
试题解析:
(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;
(2)根据题意得:5÷10%=50(人),
了解一点的人数是:50﹣5﹣15=30(人),
了解一点的人数所占的百分比是:×100%=60%;
比较了解的所占的百分是:1﹣60%﹣10%=30%,
补图如下:
(3)“比较了解”所在扇形的圆心角的度数是360°×30%=108°;
(4)根据题意得:800×30%=240(名).
答:该校七年级约有240名学生比较了解“低碳”知识.
科目:初中数学 来源: 题型:
【题目】如图,点E在菱形ABCD的对角线DB的延长线上,且∠AED=45°,过B作AE的垂线交AE于F,连接FD.当∠AFD=60°时,=___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.
(1)当圆P过点A时,求圆P的半径;
(2)分别联结EH和EA,当△ABE∽△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;
(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度也向右匀速运动.
(1)运动t秒后,点B表示的数是 ;点C表示的数是 .(用含有t的代数式表示)
(2)求运动多少秒后,BC=4(单位长度);
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式,若存在,求线段PD的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=,其中正确的是______.(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式(组):
(Ⅰ)解不等式:<
(Ⅱ)解不等式组
请结合题意填空,完成本题的解答;
(1)解不等式①,得: ;
(2)解不等式②,得: ;
(3)把不等式①和②的解集在如图数轴上表示出来;
(4)原不等式组的解集为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是
A. BC=AC B. CF⊥BF C. BD=DF D. AC=BF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.
(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.
(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.
①若点P点Q同时出发,且当点P与点Q重合时,求t的值.
②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com