精英家教网 > 初中数学 > 题目详情

【题目】菱形ABCD中,AEBCE,交BDF点,下列结论:

BF为∠ABE的角平分线;

DF=2BF

③2AB2=DFDB

④sinBAE=.其中正确的为(  )

A.①③B.①②④C.①④D.①③④

【答案】D

【解析】

由四边形ABCD是菱形,即可得BF为∠ABE的角平分线;可得①正确;由当∠ABC=60°时,DF=2BF,可得②错误;连接AC,易证得△AOD∽△FAD,由相似三角形的对应边成比例,可证得ADDF=ODAD,继而可得2AB2=DFDB,即④正确;连接FC,易证得△ABF≌△CBFSAS),可得∠BCF=BAEAF=CF,然后由正弦函数的定义,可求得④正确.

解:∵四边形ABCD是菱形,∴BF为∠ABE的角平分线,

正确;

连接ACBD于点O

∵四边形ABCD是菱形,∴AB=BC=AD,∴当∠ABC=60°时,△ABC是等边三角形,

AB=AC

DF=2BF

∵∠ABC的度数不定,∴DF不一定等于2BF

错误;

AEBCADBC,∴AEAD,∴∠FAD=90°.

∵四边形ABCD是菱形,∴ACBDOB=OD=DBAD=AB,∴∠AOD=FAD=90°.

∵∠ADO=FDO,∴△AOD∽△FAD,∴ADDF=ODAD,∴AD2=DFOD,∴AB2=DFDB

2AB2=DFDB

正确;

连接CF

在△ABF和△CBF中,∴△ABF≌△CBF(SAS),∴∠BCF=BAEAF=CF

RtEFC中,sinECF==,∴sinBAE=

正确.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,的顶点分别在边上,高与正方形的边长相等,连接分别交于点,下列说法:连接,则为直角三角形;,则的长为,其中正确结论的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,∠B30°DBC上一点,连接AD,把ABD沿直线AD折叠,点B落在B处,连接B'C,若AB'C是直角三角形,则BD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】家住重庆两相邻小区的小明和小华在一次数学课后,进行了一次数学实践活动.如图,在同一水平面从左往右依次是小明家所在的居民楼、小华家所在的小洋房、背靠小华家的一座小山,实践内容为测量小山的高度,家住顶楼的小明在窗户A处测得小山山顶的一棵大树顶端E的俯角为10°,小华在自家楼下C处测得小明家窗户A处的仰角为37°,且测得坡面CD的坡度i12,已知两家水平距离BC120米,大树高度DE3米,则小山山顶D到水平面BF的垂直高度约为( )(精确到0.1米,参考数据sin37°≈tan37°≈sin10°≈tan10°≈

A.55.0B.50.3C.48.1 D.57.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在函数的学习中,我们经历了确定函数表法式﹣画函数图象﹣利用函数图象研究函数性质﹣利用图象解决问题的学习过程.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1的图象与性质并利用图象解决问题.小明列出了如表y1x的几组对应的值:

x

4

3

2

1

0

1

2

3

4

y1

4

2

m

2

4

2

n

1)根据表格中xy1的对应关系可得m______n______

2)在平面直角坐标系中,描出表格中各点,两出该函数图象;根据函数图象,写出该函数的一条性质______

3)当函数y1的图象与直线y2mx+1有三个交点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标平面内,函数y=(x0m是常数)的图象经过A(14)B(ab),其中a1.过点Ax轴垂线,垂足为C,过点By轴垂线,垂足为D,连接ADDCCB

1)求反比例函数的解析式;

2)若△ABD的面积为4,求点B的坐标;

3)求证:DCAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.

(1)开通隧道前,汽车从A地到B地大约要走多少千米?

(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天空之城摩天轮,位于宁波市杭州湾新区欢乐世界.摩天轮高约126米(最高点到地面的距离).如图,点O是摩天轮的圆心,AB是其垂直于地面的直径,小明在地面C处用测角仪测得摩天轮最高点A的仰角为45°,测得圆心O的仰角为30°,求摩天轮的半径.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB的直径,点PBA的延长线上,PD于点D,过点B,交PD的延长线于点C,连接AD并延长,交BE于点E

(Ⅰ)求证:AB=BE

(Ⅱ)连结OC,如果PD=2,∠ABC=60°,求OC的长.

查看答案和解析>>

同步练习册答案