精英家教网 > 初中数学 > 题目详情

【题目】如图所示,已知等边ABC的两个顶点的坐标为A(-40),B20).

1)用尺规作图作出点C,并求出点C的坐标;

2)求ABC的面积.

【答案】1)作图见解析,点C的坐标为;(2.

【解析】

(1)根据等边三角形的性质,分别以点A,B为圆心,AB的长为半径画弧,从而确定点C及其坐标;(2)根据(1)问中点C的坐标和三角形的面积公式计算求解即可.

解:根据等边三角形的性质,分别以点A,B为圆心,AB的长为半径画弧j交于点C,C’;△ABC和△ABC’即为所求.

连接CC’x轴于点E,根据等边三角形三线合一的性质可知,AE=BE,CE⊥AB

A(-40),B20

∴E(-1,0)

∴AE=BE=3

∴在Rt△ACE中,

∴点C的坐标为

2A(-40),B20

∴AB=6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于EF长为半径画弧,两弧交于点P,作射线BPAC于点D,则∠BDC为(  )度.

A. 65 B. 75 C. 80 D. 85

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=120°AB=AC=4ADBCBD=2,延长ADE,使AE=2AD,连接BE

1)求证:ABE为等边三角形;

2)将一块含60°角的直角三角板PMN如图放置,其中点P与点E重合,且∠NEM=60°,边NEAB交于点G,边MEAC交于点F.求证:BG=AF

3)在(2)的条件下,求四边形AGEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+bx+cx轴交于A、B两点,与y轴交于点C,顶点为D,过点A的直线与抛物线交于点E,与y轴交于点F,且点B的坐标为(3,0),点E的坐标为(2,3).

(1)求抛物线的解析式;

(2)若点G为抛物线对称轴上的一个动点,Hx轴上一点,当以点C、G、H、F四点所围成的四边形的周长最小时,求出这个最小值及点G、H的坐标;

(3)设直线AE与抛物线对称轴的交点为P,M为直线AE上的任意一点,过点MMNPD交抛物线于点N,以P、D、M、N为顶点的四边形能否为平行四边形?若能,请求点M的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ACBC,∠ACB90°,点DAB上,点EBC上,且ADBEBDAC,连DECD

(1)找出图中全等图形,并证明;

(2)求∠ACD的度数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为(  )

A. 8 B. 8 C. 4 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则BD的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形对应边上的中线之比等于相似比.

要求:①根据给出的△ABC及线段A'B′,A′(A′=A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;

②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,,,B,E,C在一条直线上下列结论:的平分线;线段DE的中线;其中正确的有 ()个.

A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案