【题目】某校学生会为积极响应武汉市文明创建活动,组织有关方面的知识竞赛,共设有20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.
参赛者 | 答对题数 | 答错题数 | 得分 |
A | 20 | 0 | 100 |
B | 19 | 1 | 94 |
C | 18 | 2 | 88 |
(1)设答对一题记a分,答错一题记b分,则a= b= ;
(2)参赛者E说他得了80分,你认为可能吗,为什么?
【答案】(1)5,﹣1;(2)参赛者E说他得80分,是不可能的,见解析.
【解析】
(1)由题意可知从参赛者A的得分可以求出答对一题的得分=总分÷全答对的题数,再由B同学的成绩就可以得出答错一题的得分;
(2)根据题意假设他得80分可能,设答对了y道题,答错了(20﹣y)道题,根据答对的得分+加上答错的得分=80分建立方程求出其解即可.
解:(1)由题意得:
答对一题的得分是:100÷20=5分,
答错一题的扣分为:94-19×5=-1分,
故答案为:5,﹣1;
(2)假设他得80分可能,设答对了y道题,答错了(20﹣y)道题,由题意得:
5y﹣(20﹣y)=80,
解得:y=,
∵y为整数,
∴参赛者E说他得80分,是不可能的.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.
(1)求证:△PCE是等腰直角三角形;
(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,点A,点C分别在x轴和y轴上,点B(1,2).抛物线y=ax2+bx+c经过点A、C,交BC延长线于D,与x轴另一个交点为E,且AE=4.
(1)求抛物线的表达式;
(2)点P是直线OD上方抛物线上的一个动点,PF∥y轴,PQ⊥OD,垂足为Q.
①猜想:PQ与FQ的数量关系,并证明你的猜想;
②设PQ的长为,点P的横坐标为m,求与m的函数表达式,并求的最大值;
(3)如果M是抛物线对称轴上一点,在抛物线上是否存在一点N,使得以M、N、C、E为顶点的四边形是平行四边形?若存在,直接写出N点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB=m(m为常数),点C为直线AB上一点,点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.
(1)如图,若AB=6,当点C恰好在线段AB中点时,则PQ= ;
(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;
(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ与1的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两地相距千米,甲从地出发,每小时行15千米,乙从地出发,每小时行20千米.
(1)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?
(2)若两人同时出发,相向而行,则几小时后两人相距10千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中, M为BC边上的中点, D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE.
(1)填空:若D与M重合时(如图1)∠CBE= 度;
(2)如图2,当点D在线段AM上时(点D不与A、M重合),请判断(1)中结论是否成立?并说明理由;
(3)在(2)的条件下,如图3,若点P、Q在BE的延长线上,且CP=CQ=4,AB=6,试求PQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.
(1)租用一辆甲种客车、一辆乙种客车的租金各多少元?
(2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com