【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.
【答案】(1);(2)①四边形AEMF为菱形,理由详见解析;②;(3).
【解析】
试题分析:(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF≌S△DEF,则易得S△ABC=4S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE的长;(2)①通过证明四条边相等判断四边形AEMF为菱形;
②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,先证明△CME∽△CBA得到==,解出x后计算出CM=,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF;
(3)如图③,作FH⊥BC于H,先证明△NCE∽△NFH,利用相似比得到FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再证明△BFH∽△BAC,利用相似比可计算出x=,则可计算出FH和BH,接着利用勾股定理计算出BF,从而得到AF的长,于是可计算出的值.
试题解析:(1)如图①,
∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
∴EF⊥AB,△AEF≌△DEF,
∴S△AEF≌S△DEF,
∵S四边形ECBF=3S△EDF,
∴S△ABC=4S△AEF,
在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,
∴AB==5,
∵∠EAF=∠BAC,
∴Rt△AEF∽Rt△ABC,
∴=()2,即()2=,
∴AE=;
(2)①四边形AEMF为菱形.理由如下:
如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
∴AE=EM,AF=MF,∠AFE=∠MFE,
∵MF∥AC,
∴∠AEF=∠MFE,
∴∠AEF=∠AFE,
∴AE=AF,
∴AE=EM=MF=AF,
∴四边形AEMF为菱形;
②连结AM交EF于点O,如图②,
设AE=x,则EM=x,CE=4﹣x,
∵四边形AEMF为菱形,
∴EM∥AB,
∴△CME∽△CBA,
∴==,即==,解得x=,CM=,
在Rt△ACM中,AM===,
∵S菱形AEMF=EFAM=AECM,
∴EF=2×=;
(3)如图③,作FH⊥BC于H,
∵EC∥FH,
∴△NCE∽△NFH,
∴CN:NH=CE:FH,即1:NH=:FH,
∴FH:NH=4:7,
设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,
∵FH∥AC,
∴△BFH∽△BAC,
∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,
∴FH=4x=,BH=4﹣7x=,
在Rt△BFH中,BF==2,
∴AF=AB﹣BF=5﹣2=3,
∴=.
科目:初中数学 来源: 题型:
【题目】文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:
文文:“过点A作BC的中垂线AD,垂足为D”;
彬彬:“作△ABC的角平分线AD”.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”
(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形是“等对角四边形”, , , .求, 的度数.
(2)在探究“等对角四边形”性质时:
① 小红画了一个“等对角四边形”(如图2),其中, ,此时她发现成立.请你证明此结论.
② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”中, , ,AB=AD=4,.求∠D和对角线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC,BD相交于点O,且OA=OB.
(1)求证:四边形ABCD是矩形;
(2)若AD=4,∠AOD=60°,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于分式方程增根的说法正确的是( )
A.使所有的分母的值都为零的解是增根
B.分式方程的解为零就是增根
C.使分子的值为零的解就是增根
D.使最简公分母的值为零的解是增根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;
(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是扬帆中学九年八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是( )
家庭人口数(人) | 2 | 3 | 4 | 5 | 6 |
学生人数(人) | 3 | 15 | 10 | 8 | 7 |
A.5,6B.3,4C.3,5D.4,6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com