【题目】如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.
【答案】(1)y=(x﹣3)2﹣4;y=x﹣1;(2)存在,P点坐标为(3,﹣4)或(4,﹣3)或(7,12).
【解析】
(1)先将点A(1,0)代入y=(x﹣3)2+m求出m的值,根据点的对称性确定B点坐标,然后根据待定系数法求出一次函数解析式;
(2)假设存在点P,设点P(a,a2﹣6a+5),根据三角形ABP面积为三角形ABC面积,由两三角形都以AB为底边,得到C到直线AB的距离为P到直线AB距离相等,利用点到直线的距离公式列出关于a的方程,求出方程的解得到a的值,即可确定出满足题意P的坐标.
(1)将点A(1,0)代入y=(x﹣3)2+m得(1﹣3)2+m=0,解得:m=﹣4.
所以二次函数解析式为y=(x﹣3)2﹣4,即y=x2﹣6x+5;
当x=0时,y=9﹣4=5,所以C点坐标为(0,5),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=3,所以B点坐标为(6,5),将A(1,0)、B(6,5)代入y=kx+b得:,解得:.
所以一次函数解析式为y=x﹣1;
(2)假设存在点P,设点P(a,a2﹣6a+5).
∵S△ABP=S△ABC,∴C到直线AB的距离为P到直线AB距离相等,∴,即﹣a2+7a﹣6=6或﹣a2+7a﹣6=﹣6,解得:a=3,a=4或a=0(舍去),a=7,则a2﹣6a+5=﹣4或﹣3或12,∴P点坐标为(3,﹣4)或(4,﹣3)或(7,12).
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:
①4ac<b2;
②a>b>c;
③一次函数y=ax+c的图象不经第四象限;
④m(am+b)+b<a(m是任意实数);
⑤3b+2c>0.
其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2(k﹣1)x+2.
(1)当k=3时,求函数图象与x轴的交点坐标;
(2)函数图象的对称轴与原点的距离为2,当﹣1≤x≤5时,求此时函数的最小值;
(3)函数图象交y轴于点B,交直线x=4于点C,设二次函数图象上的一点P(x,y)满足0≤x≤4时,y≤2,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=与x轴分别交于A、B两点(点A在点B的左侧,)与y轴交于点C,作直线AC.
(1)点B的坐标为 ,直线AC的关系式为 .
(2)设在直线AC下方的抛物线上有一动点P,过点P作PD⊥x轴于D,交直线AC于点E,当CE平分∠OEP时求点P的坐标.
(3)点M在x轴上,点N在抛物线上,试问以点A、C、M、N为顶点的四边形能否成为平行四边形?若存在,直接写出所有点M的坐标;若不存在,请简述你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=14x2+1(如图所示).
(1)填空:抛物线的顶点坐标是(___,___),对称轴是___;
(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B. 若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上。在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y
轴相交于负半轴。给出四个结论:①;②;③;④ ,其中正确结论的序
号是___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com