精英家教网 > 初中数学 > 题目详情

【题目】如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,Rt△ ABC 的顶点均在个点上,在建立平面直角坐标系后,点 A 的坐标为(﹣6,1),B 的坐标为(﹣3,1),点 C 的坐标为(﹣3,3).

(1)Rt△ABC沿 x 轴正方向平移5个单位得到 Rt△A1B1C1,试在图上画出的图形 Rt△A1B1C1并写出点A1的坐标;

(2)将原来的 Rt△ABC 绕点 B 顺时针旋转 90°得到 Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.

【答案】(1)(2)所画图形如图所示见解析,从图中可以看出点A1的坐标为(﹣1,1).

【解析】

(1)将三角形三点分别沿 x 轴向右移动5个单位得到它们的对应点,顺次连接即可.

(2) A、C 两点绕 B 顺时针旋转 90°得到对应点,顺次连接各对应点,即成 RtA2B2C2

(1)(2)所画图形如下所示,从图中可以看出点A1的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1),P为ABC所在平面上一点,且APB=BPC=CPA=120°,则点P叫做ABC的费马点.

(1)如果点P为锐角ABC的费马点,且ABC=60°.

①求证:ABP∽△BCP;

②若PA=3,PC=4,则PB=

(2)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD 相交于P点.如图(2)

①求CPD的度数;

②求证:P点为ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(02)△AOB为等边三角形,Px轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形APQ

(1)求点B的坐标.

(2)在点P运动过程中,∠ABQ的大小是否发生改变?若不改变,求出其大小;若改变,请说明理由.

(3)连接OQ,当OQAB时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

数学活动课上,老师准备了若干个如图1的三种纸片,种纸片边长为的正方形,种纸片是边长为的正方形,种纸片长为、宽为的长方形,并用种纸片一张,种纸片一张,种纸片两张拼成如图2的大正方形.

1)观察图2,请你写出下列三个代数式:之间的等量关系.;

2)若要拼出一个面积为的矩形,则需要号卡片1张,号卡片2张,号卡片 张.

3)根据(1)题中的等量关系,解决如下问题:

①已知:,求的值;

②已知,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年四川绵阳12分)低碳生活,绿色出行,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.

1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?

2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500/辆,售价为700/辆,B型车进价为1000/辆,售价为1300/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 RtABC中,∠C=90°AC=3BC=5.作一边的垂直平分线交另一边于点D,则CD的长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.

销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.

销售量y(千克)

34.8

32

29.6

28

售价x(元/千克)

22.6

24

25.2

26

(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.

(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y1=x2+mx+n的图象经过点P﹣31),对称轴是经过(﹣10)且平行于y轴的直线.

(1)求m,n的值.

(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.

(3)直接写出y1>y2时x的取值范围.

查看答案和解析>>

同步练习册答案