【题目】如图, 已知等边, 点在射线上(不与重合),连接, 将射线绕点逆时针旋转交射线于点,过点作交直线于点.
(1)如图1,当点D为线段BC中点时,请直接写出CF,BE,CD三条线段之间的数量;
(2)如图2,“点在线段上且不是中点时,中结论是否成立?若成立,请说明理由。若不成立,请写出正确的结论并说明理由;
(3)若,当时,请直接写出线段的长.
【答案】(1)(2)成立,理由见解析(3)或或
【解析】
(1)由CF∥AB,点D为线段BC中点可得△BDE≌△CDF,根据射线绕点逆时针旋转,推出∠CDF=30°,CF=CD即可得出结论;
(2)作CG∥EF,可得四边形是平行四边形,根据平行线的性质和等边三角形的性质可推出△BCG≌△CAD即可得出结论;
(3)分点D在线段BC上和点D在BC的延长线上两种情况进行讨论,根据△BDE∽△CDF,对应边成比例即可求出答案.
(1),
证明:∵△ABC是等边三角形,点D为线段BC中点,
∴∠ADB=90°,BD=CD,
∵CF∥AB,
∴∠DBE=∠DCF,
∵∠BDE=∠CDF
∴△BDE≌△CDF,
∴BE=CF,
∵射线绕点逆时针旋转,
∴∠ADE=60°,
∴∠BDE=∠CDF=30°,
∴CF=CD
∴CF+BE=CD;
(2)成立
理由:作CG∥EF,交AB于点G,如图,
∵
四边形是平行四边形
,
∵是等边三角形
,
又∵,
∵
∴△BCG≌△CAD,
∵
;
(3)当点D在线段BC上,
设CF=x,则EG=x,
∵CF∥AB,
∴△BDE∽△CDF,
∴,
∴ ,
∴,,
当点D在BC的延长线上,如图,
同理可得:△BCG≌△CAD,
∴BE-CF=CD,
设CF=x,则CD=,
∵CF∥AB,
∴△BDE∽△CDF,
∴,
∴ ,解得:
,(舍去),
综上所述,CF的长为:或或.
科目:初中数学 来源: 题型:
【题目】一辆慢车和一辆快车沿相同路线从A地到B地,所行驶的路程与时间的函数图象如图所示,下列说法正确的有( )
①快车追上慢车需6小时;
②慢车比快车早出发2小时;
③快车速度为46km/h;
④慢车速度为46km/h;
⑤AB两地相距828km;
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某中学开展的“好书伴我成长”读书活动中,为了解八年级320名学生读书情况,随机调查了八年级部分学生读书的册数.根据调查结果绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的学生人数为_____________,图①中m的值为______________;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ)根据统计的样本数据,估计该校读书超过3册的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在中,,, 点为中点, 点在边上, 连接,过点作
上交于点,连接。下列结论:
(1)(2)(3)(4)
其中正确的是__________(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区招募了40位居民参加“众志成城,抗击疫情”志愿者服务活动,对志愿者一天的服务时长进行调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.
频数分布表
组别 | 时间/小时 | 频数/人数 |
A组 | 0≤<1 | 2 |
B组 | 1≤<2 | m |
C组 | 2≤<3 | 10 |
D组 | 3≤<4 | 12 |
E组 | 4≤<5 | 7 |
F组 | ≥5 | 4 |
扇形统计图
请根据图表中的信息解答下列问题:
(1)求频数分布表中的的值;
(2)求B组,C组在扇形统计图中分别对应扇形的圆心角的度数,并补全扇形统计图;
(3)已知F组的志愿者中,只有1名女志愿者.要从该组中选取两名志愿者分发生活物资,请用树状图或列表的方法求2名志愿恰好都是男士的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1 ,
其中正确的是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB、FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=,BE=1,求半圆的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com