【题目】某社区招募了40位居民参加“众志成城,抗击疫情”志愿者服务活动,对志愿者一天的服务时长进行调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.
频数分布表
组别 | 时间/小时 | 频数/人数 |
A组 | 0≤<1 | 2 |
B组 | 1≤<2 | m |
C组 | 2≤<3 | 10 |
D组 | 3≤<4 | 12 |
E组 | 4≤<5 | 7 |
F组 | ≥5 | 4 |
扇形统计图
请根据图表中的信息解答下列问题:
(1)求频数分布表中的的值;
(2)求B组,C组在扇形统计图中分别对应扇形的圆心角的度数,并补全扇形统计图;
(3)已知F组的志愿者中,只有1名女志愿者.要从该组中选取两名志愿者分发生活物资,请用树状图或列表的方法求2名志愿恰好都是男士的概率.
【答案】(1)5;(2)B组:45°;C组:90°;详见解析;(3)
【解析】
(1)利用40减去A组、C组、D组、E组和F组的人数即可求出结论;
(2)利用B组人数除以40再乘以360°即可求出B组在扇形统计图中对应扇形的圆心角的度数;利用C组人数除以40再乘以360°即可求出C组在扇形统计图中对应扇形的圆心角的度数;然后补全扇形统计图即可;
(3)根据题意,画出树状图,然后结合概率公式求概率即可.
解:(1)
(2)B组在扇形统计图中对应扇形的圆心角为:;C组在扇形统计图中对应扇形的圆心角为:
B组所占百分比为;C组所占百分比为
补全扇形统计图如下
(3)树状图如下
共有12种等可能的情况,其中恰好都是男士的共有6种
所以2名志愿者恰好都是男士的概率为
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,AD=,点M为AB的中点,点N为AD边上的一动点,将△AMN沿MN折叠,点A落在点P处,当点P在矩形ABCD的对角线上时,AN的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图像经过点,顶点为一次函数 的图像交轴于点是抛物线上-一点,点关于直线的对称点恰好落在抛物线的对称轴直线上(对称轴直线与轴交于点).
(1)求二次函数的表达式;
(2)求点的坐标;
(3)若点是第二象限内抛物线上一点,关于抛物线的对称轴的对称点是,连接,点是线段上一点,点是坐标平面内一点,若四边形是正方形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在边长为且一个内角为的菱形中, 点以每秒的速度从点出发,沿的路径运动,到点停止,点也以每秒的速度从点A出发,沿方向运动,到点停止,两点同时出发,过点作⊥,与边(或边)交于点,的面积与点的运动时间(秒)的函数图象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 已知等边, 点在射线上(不与重合),连接, 将射线绕点逆时针旋转交射线于点,过点作交直线于点.
(1)如图1,当点D为线段BC中点时,请直接写出CF,BE,CD三条线段之间的数量;
(2)如图2,“点在线段上且不是中点时,中结论是否成立?若成立,请说明理由。若不成立,请写出正确的结论并说明理由;
(3)若,当时,请直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国的《洛书》中记载着世界上最古老幻方:将1-9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中字母m所能表示的所有数中最大的数是( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一天,小战和同学们一起到操场测量学校旗杆高度,他们首先在斜坡底部C地测得旗杆顶部A的仰角为45°,然后上到斜坡顶部D点处再测得旗杆顶部A点仰角为37°(身高忽略不计).已知斜坡CD坡度i=1:2.4,坡长为2.6米,旗杆AB所在旗台高度EF为1.4米,旗台底部、台阶底部、操场在同一水平面上.则请问旗杆自身高度AB为( )米.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A.10.2B.9.8C.11.2D.10.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;
(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上是否存在点P,Q,使四边形PQKM的周长最小,若没有,说明理由;若有,求出点P,Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直角三角形纸片的两直角边AC与BC的比为3:4,首先将△ABC如图1所示折叠,使点C落在AB上,折痕为BD,然后将△ABD如图2所示折叠,使点B与点D重合,折痕为EF,则sin∠DEA的值为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com