【题目】如图,在△ABC中,∠BAC=135°,AD⊥BC于D,且AB+BD=DC,那么∠C= °.
【答案】15
【解析】
试题由AB+BD=DC,可以得到辅助线:在DC上截取DE=BD,连接AE;根据SAS证得△ADB≌△ADE,再利用全等三角形的对应边,对应角相等,可得到∠B=∠AED,AE=AB;又由等量代换,证得△AEC是等腰三角形,利用等边对等角,即可求得∠B与∠C的关系,由三角形的内角和是180°,即可求得结果.
解:在DC上截取DE=BD,连接AE,
∵AD⊥BC,
∴∠ADB=∠ADE=90°,
∵AD=AD,
∴△ADB≌△ADE,
∴∠B=∠AED,AE=AB,
∵AB+BD=DC,DE+EC=DC,
∴AE=AB=EC,
∴∠AEB=2∠EAC=2∠C,
∴∠B=2∠C,
∵∠BAC=135°,∠B+∠C+∠BAC=180°,
∴3∠C=45°,
∴∠C=15°.
故答案为:15.
科目:初中数学 来源: 题型:
【题目】小琳、晓明两人在100m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.
(1)设小琳速度为v(m/s),写出小琳跑完全程所用的时间t(s)与速度v(m/s)之间的函数关系式;
(2)已知晓明的速度是小琳速度的1.25倍,两人跑完全程,小琳要比晓明多用4s,用分式方程求小琳、晓明两人匀速跑步的速度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,则∠EOF的度数是( )
A. 88° B. 30° C. 32° D. 48°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):
院系篮球赛成绩公告 | |||
比赛场次 | 胜场 | 负场 | 积分 |
22 | 12 | 10 | 34 |
22 | 14 | 8 | 36 |
22 | 0 | 22 | 22 |
盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:
(1)从表中可以看出,负一场积______分,胜一场积_______分;
(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.
(1)求证:△ABC∽A′B′C′;
(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E.CE=2,延长CE,BA交于点F.
(1)求证:△ADB≌△AFC;
(2)求BD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:点 A、B 在数轴上分别表示两个数 a、b,A、B 两点间的距离记为|AB|,O 表示原点当 A、B 两点中有一点在原点时,不妨设点 A 为原点, 如图 1,则|AB|=|OB|=|b|=|a﹣b|;当 A、B 两点都不在原点时,
①如图 2,若点 A、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
②如图 3,若点 A、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=|﹣b﹣(﹣a)=|a﹣b|;
③如图 4,若点 A、B 在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|. 回答下列问题:综上所述,数轴上 A、B 两点间的距离为|AB|=|a﹣b|
(1)若数轴上的点 A 表示的数为﹣1,点 B 表示的数为 9,则 A、B 两点间的距离为
(2)若数轴上的点 A 表示的数为﹣1,动点 P 从点 A 出发沿数轴正方向运动, 点 P 的速度是每秒 4 个单位长度,t 秒后点 P 表示的数可表示为
(3)若点 A 表示的数﹣1,点 B 表示的数 9,动点 P、Q 分别同时从 A、B 出发沿数轴正方向运动,点 P 的速度是每秒 4 个单位长度,点 Q 的速度是每秒 2 个单位长度,求:运动几秒时,点 P 可以追上点 Q?(请写出必要的求解过程)
(4)若点 A 表示的数﹣1,点 B 表示的数 9,动点 P、Q 分别同时从 A、B 出发沿数轴正方向运动,点 P 的速度是每秒 4 个单位长度,点 Q 的速度是每秒 2 个单位长度,求运动几秒时,P、Q 两点相距 5 个单位长度?(请写出必要的求解过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com