精英家教网 > 初中数学 > 题目详情
14.先化简,再求值:2a+2(2b-a)-3(a-2b),其中a=-1,b=$\frac{1}{2}$.

分析 原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.

解答 解:原式=2a+4b-2a-3a+6b=10b-3a,
当a=-1,b=$\frac{1}{2}$时,原式=5+3=8.

点评 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.已知方程组$\left\{\begin{array}{l}{5x+2y=1}\\{3x+4y=3}\end{array}\right.$,则x-y的值是-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A,B两点(点A在点B左侧),与y轴交于点C,点A,C的坐标分别为(-3,0),(0,3),对称轴直线x=-1交x轴于点E,点D为顶点.
(1)求抛物线的解析式;
(2)点K是直线AC下方的抛物线上一点,且S△KAC=S△DAC求点K的坐标;
(3)如图2若点P是线段AC上的一个动点,∠DPM=30°,DP⊥DM,则点P的线段AC上运动时,D点不变,M点随之运动,求当点P从点A运动到点C时,点M运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知平行四边形ABCD中,对角线AC垂直于边AB,AB=1,平行四边形ABCD的面积为$\sqrt{3}$,点P为直线BC上一点,若点P到直线AC的距离是$\frac{1}{4}$,则PB的长是$\frac{3}{2}$或$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在△ABC中,∠BAC=90°,AB=AC.
(1)如图,若A,B两点的坐标分别是A(0,4),B(-2,0),求C点的坐标.
(2)如图,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q为∠FPC与∠PFC的角平分线的交点,若点P运动时,点Q是否恒在∠ABC的平分线上?若在,请说明,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.不解方程,判别方程2x2-2$\sqrt{2}$x+1=0根的情况是(  )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,二次函数y=-x2+2x+3的图象与x轴交于点A和点B,顶点为C,AC与y轴交于点D,则$\frac{OD}{AD}$=(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.有理数a,b,c表示的点在数轴上的位置如图所示,
(1)用“<”连接0,a,b,c;
(2)化简代数式|a+c|-|c-b|-2|b+a|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.列式计算:
已知下列各数:-2.5,6,$\frac{2}{3}$,0,-4,写出整数的和与分数的积的差.

查看答案和解析>>

同步练习册答案