精英家教网 > 初中数学 > 题目详情
19.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,
③b2-4ac>0,④ac>0,其中正确的个数是(  )
A.1B.2C.3D.4

分析 令x=1代入可判断①;由对称轴表达式的范围可判断②;由图象与x轴有两个交点可判断③;由开口方向及与x轴的交点可分别得出a、c的符号,可判断④.

解答 解:由图象可知当x=1时,y<0,
∴a+b+c<0,
故①不正确;
由图象可知0<-$\frac{b}{2a}$<1,
∴$\frac{b}{2a}$>-1,
又∵开口向上,
∴a>0,
∴b>-2a,
∴2a+b>0,
故②正确;
由图象可知二次函数与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴△>0,即b2-4ac>0,
故③正确;
由图象可知抛物线开口向上,与y轴的交点在x轴的下方,
∴a>0,c<0,
∴ac<0,
故④不正确;
综上可知正确的为②③,
故选B.

点评 本题考查了二次函数的图象与系数的关系,以及二次函数的图象和性质,掌握二次函数的开口方向、对称轴、与x轴的交点等知识是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.下列网格图中,每个小正方形边长均为1个单位,在Rt△ABC中,AC=4,BC=3,∠C=90°.若点B的坐标为(-3,-3),试在图中画出平面直角坐标系,根据所建立的坐标系,在给出的网格中作出与△ABC位似的△A1B1C1,使得位似中心为原点,△A1B1C1与△ABC的相似比是2,并写出A1、B1、C1点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.为解决老百姓看病贵的问题,对某种原价为400元的药品进行连续两次降价,降价后的价格为256元,设每次降价的百分率为x,则依题意列方程为:400(1-x)2=256.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.将直线y=2x-5向上平移7个单位所得的直线的解折式为y=2x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平行四边形ABCD中,对角线AC、BD交于点O,M为AD中点,连接CM交BD于点N,且ON=1.
(1)求证:△DMN∽△BCN;
(2)求BD的长;
(3)若△DCN的面积为2,求四边形ABNM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.学习完一次函数后,小荣遇到过这样的一个新颖的函数:y=|x-1|,小荣根据学校函数的经验,对函数y=|x-1|的图象与性质进行了探究.下面是小荣的探究过程,请补充完成:
(1)列表:下表是y与x的几组对应值,请补充完整.
x-3-2-10123
y4321012
(2)描点连线:在平面直角坐标系xOy中,请描出以上表中各对对应值为坐标的点,画出该函数的图象;
(3)进一步探究发现,该函数图象的最低点的坐标是(1,0),结合函数的图象,写出该函数的其他性质(一条即可):当x<0时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.有七张正面分别标有数字-1、-2、0、1、2、3、4的卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使关于x的方程$\frac{2}{x-1}$+$\frac{x+m}{1-x}$=2的解为正数,且不等式组$\left\{\begin{array}{l}{2x+3>5}\\{x-m<0}\end{array}\right.$无解的概率是$\frac{3}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知$\left\{\begin{array}{l}{x+2y=5}\\{2x+y=4}\end{array}\right.$,则x+y=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.($\frac{4}{5}$)2012×(-1.25)2013=-1.25.

查看答案和解析>>

同步练习册答案