【题目】如图,已知抛物线经过原点O,顶点A(1,﹣1),且与直线y=kx+2相交于B(2,0)和C两点
(1)求抛物线和直线BC的解析式;
(2)求证:△ABC是直角三角形;
(3)抛物线上存在点E(点E不与点A重合),使∠BCE=∠ACB,求出点E的坐标;
(4)在抛物线的对称轴上是否存在点F,使△BDF是等腰三角形?若存在,请直接写出点F的坐标.
【答案】(1)y=x2﹣2x,y=﹣x+2;(2)详见解析;(3)E();(4)符合条件的点F的坐标(1,)或(1,﹣)或(1,2+)或(1,2﹣).
【解析】
(1)将B(2,0)代入设抛物线解析式y=a(x﹣1)2﹣1,求得a,将B(2,0)代入y=kx+2,求得k;
(2)分别求出AB2、BC2、AC2,根据勾股定理逆定理即可证明;
(3)作∠BCE=∠ACB,与抛物线交于点E,延长AB,与CE的延长线交于点A',过A'作A'H垂直x轴于点H,设二次函数对称轴于x轴交于点G.根据对称与三角形全等,求得A'(3,1),然后求出A'C解析式,与抛物线解析式联立,求得点E坐标;
(4)设F(1,m),分三种情况讨论:①当BF=BD时,,②当DF=BD时,,③当BF=DF时,,m=1,然后代入即可.
(1)设抛物线解析式y=a(x﹣1)2﹣1,
将B(2,0)代入,
0=a(2﹣1)2﹣1,
∴a=1,
抛物线解析式:y=(x﹣1)2﹣1=x2﹣2x,
将B(2,0)代入y=kx+2,
0=2k+2,
k=﹣1,
∴直线BC的解析式:y=﹣x+2;
(2)联立,
解得,,
∴C(﹣1,3),
∵A(1,﹣1),B(2,0),
∴AB2=(1﹣2)2+(﹣1﹣0)2=2,
AC2=[1﹣(﹣1)]2+(﹣1﹣3)2=20,
BC2=[2﹣(﹣1)]2+(0﹣3)2=18,
∴AB2+BC2=AC2,
∴△ABC是直角三角形;
(3)如图,作∠BCE=∠ACB,与抛物线交于点E,延长AB,与CE的延长线交于点A',过A'作A'H垂直x轴于点H,设二次函数对称轴于x轴交于点G.
∵∠BCE=∠ACB,∠ABC=90°,
∴点A与A'关于直线BC对称,
AB=A'B,
可知△AFB≌△A'HB(AAS),
∵A(1,﹣1),B(2,0)
∴AG=1,BG=OG=1,
∴BH=1,A'H=1,OH=3,
∴A'(3,1),
∵C(﹣1,3),
∴直线A'C:,
联立:,
解得或,
∴E(,);
(4)∵抛物线的对称轴:直线x=1,
∴设F(1,m),
直线BC的解析式:y=﹣x+2;
∴D(0,2)
∵B(2,0),
∴BD=
,
,
①当BF=BD时,,
m=±,
∴F坐标(1,)或(1,﹣)
②当DF=BD时,,
m=2±,
∴F坐标(1,2+)或(1,2﹣)
③当BF=DF时,,
m=1,
F(1,1),此时B、D、F在同一直线上,不符合题意.
综上,符合条件的点F的坐标(1,)或(1,﹣)或(1,2+)或(1,2﹣).
科目:初中数学 来源: 题型:
【题目】随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“其他”付款的扇形圆心角的度数为 ;
(2)补全条形统计图;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人, = ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四钟活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形OA1B1C1的边长为1,以O为圆心,OA1为半径作扇形OA1C1,弧A1C1与OB1相交于点B2,设正方形OA1B1C1与扇形OA1C1之间的阴影部分的面积为S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心,OA2为半径作扇形OA2C2,弧A2C2与OB1相交于点B3,设正方形OA2B2C2与扇形OA2C2之间的阴影部分面积为S2;按此规律继续作下去,设正方形OA2018B2018C2018与扇形OA2018C2018之间的阴影部分面积为S2018,则S2018=____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数人数 |
第1组 | 6 | |
第2组 | 8 | |
第3组 | 14 | |
第4组 | a | |
第5组 | 10 |
请结合图表完成下列各题:
求表中a的值; 频数分布直方图补充完整;
若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列尺规作图中,能确定圆心的是( )
①如图1,在圆上任取三个点A,B,C,分别作弦AB,BC的垂直平分线,交点O即为圆心
②如图2,在圆上任取一点B,以B为圆心,小于直径长为半径画弧交圆于A,C两点连结AB,BC,作∠ABC的平分线交圆于点D,作弦BD的垂直平分线交BD于点O,点O即为圆心
③如图3,在圆上截取弦AB=CD,连结AB,BC,CD,分别作∠ABC与∠DCB的平分线,交点O即为圆心
A. ①②B. ①③C. ②④D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°
(1)求证:BC为⊙O切线;
(2)求∠ADB的度数;
(3)若ME=1,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x.
(1)第二批衬衫进价为 元,购进的数量为 件.(都用含x的代数式表示,不需化简)
(2)求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“足球运球”被列入中招体育必考项目.为此某学校举行“足球运球”达标测试,将成绩10分、9分、8分、7分,对应定为A,B,C,D四个等级.某班根据测试成绩绘制如下统计图,请回答下列问题:
(1)该班级的总人数为 ,m= .
(2)补全条形统计图.
(3)该班“足球运球”测试的平均成绩是多少?
(4)现准备从等级为A的4个人(2男2女)中随机抽取两个人去参加比赛,请用列表或画树状图的方法,求出恰好抽到一男一女的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com