【题目】如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连结ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标.
【答案】(1)E(0,3)(2)y=x2﹣x(3)
【解析】
(1)先求出直线AB的解析式,从而根据点E的横坐标为0,可得其纵坐标;
(2)根据抛物线过原点,可设抛物线为y=mx2+nx,代入A、B的坐标,即可确定抛物线解析式;
(3)只需确定边OB上高的最大值即可,设过点N且与直线OB平行的直线解析式为y=x+c,当且仅当直线y=x+c与抛物线y=相切时△BON的面积最大,确定取得最大时点N的坐标,再由S△BON=S△OCB﹣S△ODN﹣S梯形NDCB,即可得出答案.
(1)设点A、B所在的直线解析式为y=kx+b,
则
解得:
即直线AB的解析式为y= x+3,
令x=0,得y=3,
故E(0,3).
(2)∵所求抛物线过原点,
∴设所求抛物线为y=mx2+nx,
将点A、B的坐标代入,得:
解得:
∴抛物线的解析式为
(3)不难求出直线OB的解析式为y=x,
要使△BON的面积最大,只需OB边上的高最大即可,
设过点N且与直线OB平行的直线解析式为y=x+c,
当且仅当直线y=x+c与抛物线相切时△BON的面积最大,
由,消去y并整理得x2﹣6x﹣4c=0,
当△(﹣6)2﹣4×1×(﹣4c)=0时,方程x2﹣6x﹣4c=0的解为x=3,
将x=3代入,得y=,
∴N(3,),
过点B、N分别作BC⊥x轴于点C,ND⊥x轴于点D,
S△BON=S△OCB﹣S△ODN﹣S梯形NDCB=
科目:初中数学 来源: 题型:
【题目】抛物线y=a(x+2)2+c与x轴交于A,B两点,与y轴负半轴交于点C,已知点A(-1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若把抛物线与直线y=-x-4的交点称为抛物线的不动点,若将此抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点;
(3)Q为直线y=-x-4上一点,在此抛物线的对称轴上是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是( )
A. 0B. 4C. 6D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,⊙O是Rt△ABC的内切圆,切点为D、E、F.
(1)求证:四边形OECF是正方形;
(2)若AF=10,BE=3,求⊙O的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+1与x轴交于两点A(﹣1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的顶点都在格点上.
(1)利用图①以AB为边画一个面积最大的平行四边形,且这个平行四边形的其他两个顶点在格点上;
(2)利用图②以AB为边画一个面积为4的平行四边形,且这个平行四边形的其他两个顶点在格点上;
(3)利用图③以AB为边画一个面积为4的菱形,且这个菱形的其他两个顶点在格点上。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y-x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”
(1)点A(2,6)的“坐标差”为________;
(2)求抛物线y=-x2+5.x+4的“特征值”;
(3)某二次函数y=-x2+bx+c(c≠0)的“特征值”为-1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式;
(4)二次函数y=-x2+px+q的图象的顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上点下在x轴上,当二次函数y=-x2+px+q的图象与矩形的边只有三个交点时,求此二次函数的解析式及特征值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C(0,﹣3)
(1)求出该抛物线的函数关系式及对称轴
(2)点P是抛物线上的一个动点,设点P的横坐标为t (0<t<3).当△PCB的面积的最大值时,求点P的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AB∥CD,BC⊥CD,AB=2,CD=3,在BC上取点P(P与B、C不重合)连接PA延长至E,使PA=2AE,连接PD并延长至F,使PD=3FD,以PE、PF为边作平行四边形,另一个顶点为G,则PG长度的最小值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com