【题目】已知A(-4,2)、B(n,-4)两点是一次函数y=kx+b和反比例函数图象的两个交点.
(1)求一次函数和反比例函数的解析式.
(2)求的面积.
(3)观察图象,直接写出不等式的解集.
【答案】(1)一次函数解析式为:y=-x-2;反比例函数解析式为:;(2)6;(3)x<-4或0<x<2
【解析】
(1)先把点A的坐标代入反比例函数解析式,即可得到m=-8,再把点B的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=-x-2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<-4或0<x<2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
解:
把A(-4,2)代入y=,得m=2×(-4)=-8,
所以反比例函数解析式为y=,
把B(n,-4)代入y=,得-4n=-8,
解得n=2,
把A(-4,2)和B(2,-4)代入y=kx+b,得 ,
解得,
所以一次函数的解析式为y=-x-2;
(2)y=-x-2中,令y=0,则x=-2,
即直线y=-x-2与x轴交于点C(-2,0),
∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;
(3)由图可得,不等式kx+b->0的解集为:x<-4或0<x<2.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | m | 5 | 2 | 1 | 2 | … |
则m的值是_____,当y<5时,x的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | <> | … | |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:
(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当时,随的增大而______;(“增大”或“减小”)
②的图象是由的图象向______平移______个单位而得到的;
③图象关于点______中心对称.(填点的坐标)
(3)函数与直线交于点,,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,m+1),B(m+3,m1)都在反比例函数的图象上,如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,直接写出点M,N的坐标:____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为( )
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的顶点在⊙O上,点P是劣弧上的一点(端点除外),延长BP至点D,使BD=AP,连结CD.
(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;
(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com