精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD内接于⊙O,连结BD,∠BAD=105°,∠DBC=75°.若⊙O的半径为3,则弧BC的长是( )

A. B. π C. D.

【答案】B

【解析】

根据圆内接四边形的对角互补得出∠DCB=180°105°=75°,根据三角形的内角和得出∠BDC=30°,根据同弧所对的圆周角等于圆心角的一半得出∠BOC=60°,根据弧长计算公式即可算出答案.

连接OB,OC

∵四边形ABCD内接于圆O

∴∠C+BAD=180°,

∵∠BAD=105°,

∴∠DCB=180°105°=75°,

∵∠DBC=75°,

∴∠DCB=DBC=75

∴∠BDC=30°,

∴∠BOC=60°,

∴弧BC的长为:.

故答案为:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.

(1)求m的值和二次函数的解析式.

(2)请直接写出使y1>y2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有RtABC,∠BAC=90°,AB=AC,A(-3,0),B(0,1),C(m,n)。

(1)请直接写出C点坐标。

(2)ABC 沿x轴的正方向平移t个单位,两点的对应点、正好落在反比例函数在第一象限内图象上。请求出t,k的值。

(3)(2)的条件下,问是否存x轴上的点M和反比例函数图象上的点N,使得以、M、N为顶点的四边形构成平行四边形?如果存在,请求出所有满足条件的点M和点N的坐标;如果不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为维护南海主权,我海军舰艇加强对南海海域的巡航,日上午时,我海巡号舰艇在观察点处观测到其正东方向海里处有一灯塔,该舰艇沿南偏东的方向航行,时到达观察点,测得灯塔位于其北偏西方向,求该舰艇的巡航速度?(结果保留整数)

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,yx成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.

(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;

(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E⊙O上一动点,CF⊥AEF,则弦AB的长度为________;点E在运动过程中,线段FG的长度的最小值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AB=AC,以AB为直径的⊙OBC于点D,交AC于点E.

(1)∠BAC为锐角时,如图,求证:∠CBE=∠BAC;

(2)∠BAC为钝角时,如图②,CA的延长线与⊙O相交于点E,(1)中的结论是否仍然成立?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC交⊙O于点E,连接BEAC于点H。(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为﹣1,AC:BC=3:1.

(1)求点A的坐标;

(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若FCD与AED相似,求此二次函数的关系式.

查看答案和解析>>

同步练习册答案