【题目】用各种盛水容器可以制作精致的家用流水景观(如图1).
科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h(单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).
应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.
(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?
(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;
(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.
【答案】(1),当时,;(2)或;(3)垫高的高度为16cm,小孔离水面的竖直距离为18cm
【解析】
(1)将s2=4h(20-h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;
(2)设存在a,b,使两孔射出水的射程相同,则4a(20-a)=4b(20-b),利用因式分解变形即可得出答案;
(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.
解:(1)∵s2=4h(H-h),
∴当H=20时,s2=4h(20-h)=-4(h-10)2+400,
∴当h=10时,s2有最大值400,
∴当h=10时,s有最大值20cm.
∴当h为何值时,射程s有最大值,最大射程是20cm;
故答案为:最大射程是20cm.
(2) ∵s2=4h(20-h),
设存在a,b,使两孔射出水的射程相同,则有:
4a(20-a)=4b(20-b),
∴20a-a2=20b-b2,
∴a2-b2=20a-20b,
∴(a+b)(a-b)=20(a-b),
∴(a-b)(a+b-20)=0,
∴a-b=0或a+b-20=0,
∴a=b或a+b=20.
故答案为:a=b或a+b=20.
(3)设垫高的高度为m,则
∴当时,
∴时,此时
∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.
故答案为:垫高的高度为16cm,小孔离水面的竖直距离为18cm.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC和△DCE都是等边三角形.
探究发现
(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.
拓展运用
(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.
(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OC=3,OA=,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为____________(用含a,b的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,抛物线的顶点是A(1,3),将OA绕点O逆时针旋转后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.
(1)求抛物线的解析式;
(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与的边分别交于M,N两点,将以直线MN为对称轴翻折,得到.
设点P的纵坐标为m.
①当在内部时,求m的取值范围;
②是否存在点P,使,若存在,求出满足m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过点A(3,0)和点B(2,3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.
(1)求这条抛物线的表达式及对称轴;
(2)联结AB、BC,求∠ABC的正切值;
(3)若点D在x轴下方的对称轴上,当S△DBC=S△ADC时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线交x轴于A、B两点,其中点A坐标为,与y轴交于点C,且对称轴在y轴的左侧,抛物线的顶点为P.
(1)当时,求抛物线的顶点坐标;
(2)当时,求b的值;
(3)在(1)的条件下,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线、分别交抛物线的对称轴于点M、N.请问是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,将△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.
(1)求OB的长;
(2)如图2,F,G是直线AB上的两点,若△DFG是以FG为斜边的等腰直角三角形,求点F的坐标;
(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com