【题目】王华由,,,,,这些算式发现:任意两个奇数的平方差都是8的倍数
(1)请你再写出两个(不同于上面算式)具有上述规律的算式;
(2)请你用含字母的代数式概括王华发现的这个规律(提示:可以使用多个字母);
(3)证明这个规律的正确性.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B>90°,CD为∠ACB的角平分线,在AC边上取点E,使DE=DB,且∠AED>90°.若∠A=α,∠ACB=β,则( )
A.∠AED=180°﹣α﹣βB.∠AED=180°﹣α﹣β
C.∠AED=90°﹣α+βD.∠AED=90°+α+β
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,于点.
(1)如图1所示,点分别在线段上,且,当时,求线段的长;
(2)如图2,点在线段的延长线上,点在线段上,(1)中其他条件不变.
①线段的长为 ;
②求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.
(1)求证:AB是☉O的切线;
(2)若∠A=60°,DF=,求☉O的直径BC的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于的方程有两个不相等的实数根.
求实数的取值范围;
是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com