精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值为( )

A.1:2
B.1:3
C.1:4
D.2:3

【答案】B
【解析】连接BD,与AC相交于O,

∵点E、F分别是AD、AB的中点,

∴EF是△ABD的中位线,

∴EF∥DB,且EF= DB,

∴△AEF∽△ADB, =

= =

= ,即G为AO的中点,

∴AG=GO,又OA=OC,

∴AG:GC=1:3.

所以答案是:B.

【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半,以及对平行四边形的性质的理解,了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC,AB=AC,AB的垂直平分线DEAC于点E,CE的垂直平分线正好经过点B,AC相交于点F,连接BE,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.

(1)求∠DAB的度数.

(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,专业救助船“沪救1”轮、“沪救2”轮分别位于A、B两处,同时测得事发地点C在A的南偏东60°且C在B的南偏东30°上.已知B在A的正东方向,且相距100里,请分别求出两艘船到达事发地点C的距离.(注:里是海程单位,相当于一海里.结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,真命题是( )

A. 如果三角形三个角的度数比是3:4:5,那么这个三角形是直角三角形

B. 如果直角三角形两直角边的长分别为ab,那么斜边的长为a2+b2

C. 若三角形三边长的比为1:2:3,则这个三角形是直角三角形

D. 如果直角三角形两直角边分别为ab,斜边为c,那么斜边上的高h的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB上有一任意点C,点M是线段AC的中点,点N是线段BC的中点,当AB=6cm时,

1)求线段MN的长.

2)当CAB延长线上时,其他条件不变,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.

(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=5,AB=7,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DEBC,下面是王华同学的推导过程﹐请你帮他在括号内填上推导依据或内容.

证明:

∵∠1+∠2﹦180(已知),

∠1﹦∠4 _________________

∴∠2﹢_____﹦180°.

EHAB___________________________________

∴∠B﹦∠EHC________________________________

∵∠3﹦∠B(已知)

∴ ∠3﹦∠EHC____________________

DEBC__________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图像大致为(  )

A. A B. B C. C D. D

查看答案和解析>>

同步练习册答案