如图,点O在边长为8的正方形ABCD的AD边上运动(4<C)A<8),以O为圆心,OA长为半径作圆,交CD于点E,连接OE、AE,过点E作直线EF交BC于 点F,且∠CEF=2∠DAE.
(1)求证:直线EF为⊙O的切线;
(2)在点O的运动过程中,设DE=x,解决下列问题:
①求OD·CF的最大值,并求此时半径的长;
②试猜想并证明△CEF的周长为定值.
![]()
(1)证明见解析;(2)16,5;证明见解析.
【解析】
试题分析:(1)由OA=OB得∠OAE=∠OEA,则根据三角形外角性质得∠DOE=2∠DAE,由于∠CEF=2∠DAE,则∠CEF=∠DOE,加上∠DOE+∠DEO=90°,则∠CEF+∠DEO=90°,所以∠OEF=90°,于是可根据切线的判定定理得到直线EF为⊙O的切线;
(2)由于∠CEF=∠DOE,根据三角形相似的判定得到Rt△DOE∽Rt△CEF,利用相似比得OD•CF=DE•EC=x(8-x),配方得OD•CF=-(x-4)2+16,然后根据二次函数的性质得当x=4时,OD•CF的值最大,最大值为16;设此时半径为R,则OA=OE=R,OD=8-R,在Rt△ODE中,根据勾股定理可计算出此时半径为5;
(3)在Rt△ODE中,利用勾股定理得到(8-OE)2+x2=OE2,则OE=4+
,OD=8-OE=4-
,再利用Rt△DOE∽Rt△CEF得到相似比
,即
,可计算得CF=
,EF=
,然后根据三角形周长的定义得到△CEF的周长得到CE+CF+EF=8-x+
+
,再进行分式的化简运算即可得到△CEF的周长为16.
试题解析:(1)证明:∵OA=OB,
∴∠OAE=∠OEA,
∴∠DOE=2∠DAE,
∵∠CEF=2∠DAE,
∴∠CEF=∠DOE,
∵四边形ABCD为正方形,
∴∠D=90°,
∴∠DOE+∠DEO=90°,
∴∠CEF+∠DEO=90°,
∴∠OEF=90°,
∴OE⊥EF,
∴直线EF为⊙O的切线;
(2)【解析】
∵∠CEF=∠DOE,
∴Rt△DOE∽Rt△CEF,
∴
,
∴OD•CF=DE•EC,
∵DE=x,
∴EC=8-x,
∴OD•CF=x(8-x)
=-x2+8x
=-(x-4)2+16,
当x=4时,OD•CF的值最大,最大值为16,
设此时半径为R,则OA=OE=R,OD=8-R,
在Rt△ODE中,
∵OD2+DE2=OE2,
∴(8-R)2+42=R2,解得R=5,
即此时半径为5;
(3)猜想△CEF的周长为16.
在Rt△ODE中,OD2+DE2=OE2,即(8-OE)2+x2=OE2,
∴OE=4+
,
∴OD=8-OE=4-
,
∵Rt△DOE∽Rt△CEF,
∴
,即![]()
∴CF=
,EF=
,
∴△CEF的周长=CE+CF+EF= CE+CF+EF=8-x+
+
=16.
考点:圆的综合题.
科目:初中数学 来源:2013-2014学年江苏省九年级新课结束考试数学试卷(解析版) 题型:解答题
如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
![]()
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省太仓市九年级5月学科教学质量调研数学试卷(解析版) 题型:填空题
如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为 °.[来
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省句容市九年级下学期期中考试(即一模)数学试卷(解析版) 题型:解答题
如图①,②,在平面直角坐标系
中,点
的坐标为(4,0),以点
为圆心,4为半径的圆与
轴交于
,
两点,
为弦,
,
是
轴上的一动点,连结
。
(1)
的度数为 ;
(2)如图①,当
与⊙A相切时,求
的长;
(3)如图②,当点
在直径
上时,
的延长线与⊙A相交于点
,问
为何值时,
是等腰三角形?
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省南京市溧水区中考一模数学试卷(解析版) 题型:填空题
已知菱形ABCD的对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为 cm.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com