【题目】两块不同的三角板按如图所示摆放,两个直角顶点C重合,,。接着保持三角板ACD不动,将三角板CBE绕着点C旋转,但保证点E在直线AC的上方,若三角板CBE有一条边与斜边AD平行,则∠ACE=__________.
【答案】30°或120°或165°
【解析】
根据题意,可分为三种情况进行①当AD∥BC时,②当AD∥CE时,当AD∥BE时,分别求出三种情况的角度,即可得到答案.
解:有三种情形:
①如图1中,当AD∥BC时.
∵AD∥BC,
∴∠D=∠BCD=30°,
∵∠ACE+∠ECD=∠ECD+∠DCB=90°,
∴∠ACE=∠DCB=30°;
②如图2中,当AD∥CE时,∠DCE=∠D=30°,
可得∠ACE=90°+30°=120°.
③如图3中,当AD∥BE时,延长BC交AD于M.
∵AD∥BE,
∴∠AMC=∠B=45°,
∴∠ACM=180°-60°-45°=75°,
∴∠ACE=75°+90°=165°,
综上所述,满足条件的∠ACE的度数为30°或120°或165°.
故答案是:30°或120°或165°.
科目:初中数学 来源: 题型:
【题目】如图,某小区在一块长为16m,宽为9m的矩形空地上新修三条宽度相同的小路,其中一条和矩形的一边平行,另外两条和矩形的另一边平行,空地剩下的部分种植花草,使得花草区域占地面积为120m2.设小路的宽度为xm,则下列方程:
①(16﹣2x)(9﹣x)=120
②16×9﹣9×2x﹣(16﹣2x)x=120
③16×9﹣9×2x﹣16x+x2=120,
其中正确的是( )
A.①B.②C.①②D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(0,4)、B(4,4)、C(4,0),D(1,0).
(1)若抛物线经过A、B、D三点,求此抛物线的解析式;
(2)若(1)中的抛物线的顶点为E,连接EB,若P是EB上一动点,过P点作PM⊥AB,PN垂直于y轴,垂足分别是M、N.求矩形AMPN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,P 为△ABC 内一点,连接 PA、PB、PC,在△PAB、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称 P 为△ABC 的自相似点.
(1)如图 2,已知 Rt△ABC 中,∠ACB=90°,CD 是 AB 上的中线,过点 B 作 BE⊥CD,垂足为 E,试说明 E 是△ABC 的自相似点.
(2)如图 3,在△ABC 中,∠A<∠B<∠C.若△ABC 的三个内角平分线的交 点 P 是该 三角形的自相似点,求该三角形三个内角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,轮船从处以每小时60海里的速度沿南偏东方向匀速航行,在处观测灯塔位于南偏东方向上,轮船航行40分钟到达处,在处观测灯塔位于北偏东方向上,求处与灯塔的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】赣州蓉江新区某汽车销售公司去年12月份销售新上市一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,今年2月月份该公司销售该型汽车达到450辆,并且去年12月到今年1月和今年1月到2月两次的增长率相同.
(1)求该公司销售该型汽车每次的增长率;
(2)若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化为y=(x﹣h)2+k形式;
(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017黑龙江省龙东地区)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)
(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴,轴分别相交于,两点,与双曲线()相交于点,过作轴于点,,在点右侧的双曲线上取一点,作轴于,当以点,,为顶点的三角形与相似,则点的坐标是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com