【题目】已知关于、的二元一次方程组(为常数).
(1)求这个二元一次方程组的解(用含的代数式表示);
(2)若方程组的解、满足,求的取值范围;
(3)若,设,且m为正整数,求m的值.
【答案】(1);(2)k <﹣;(3)m的值为1或2.
【解析】
(1)把k当成一个已知得常数,解出二元一次方程组即可;
(2)将(1)中得的值代入 ,即可求出的取值范围;
(3)将(1)中得的值代入得m=7k﹣5。由于m>0,得出7k﹣5>0,及得出解集 进而得出m的值为1或2
(1)
②+①,得4x=2k﹣1,
即 ;
②﹣①,得2y=﹣4k+3
即
所以原方程组的解为
(2)方程组的解x、y满足x+y>5,
所以 ,
整理得﹣6k >15,
所以 ;
(3)m=2x﹣3y=
=7k﹣5
由于m为正整数,所以m>0
即7k﹣5>0,k>
所以<k≤1
当k=时,m=7k﹣5=1;
当k=1时,m=7k﹣5=2.
答:m的值为1或2.
科目:初中数学 来源: 题型:
【题目】“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)共抽取了多少个学生进行调查?
(2)将图甲中的折线统计图补充完整.
(3)求出图乙中B等级所占圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌店购进A种衬30件和B种衬衫40件共用了9600元,购进A种衬衫40件和B种衬衫20件共用了7800元.
(1)A、B两种衬衫的单价分别是多少元?
(2)已知该品牌店购进B种衬衫的件数比A种衬衫的件数的2倍少2件,如果购进A、B两种衬衫的总件数不少于97件,且该品牌购进A、B两种衬衫的总费用不超过13980元,那么该品牌店有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:
(1)填空:a=________;b=________;m=________.
(2)若小军的速度是 120 米/分,求小军第二次与爸爸相遇时距图书馆的距离.
(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为________分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若数轴上点表示有理数,点表示有理数,则的中点表示的数可用公式求得,如点表示的数分别是和,则线段的中点所表示的数是.
(1)如图1,点所表示的数是,点所表示的数是,则的距离是_______;
(2)若点表示的数是,线段的中点所表示的数是,则点表示的数是__________;
(3)如图1,点、点、点表示的数分别是,两个动点分别从点和点同时出发,点以每秒个单位长度的速度向右运动,点以每秒个单位长度的速度向右运动。
①运动秒后点所表示的数是_________,运动秒后点所表示的数是_______.
②问运动几秒后,三个点中的一点恰好是连接另外两点的线段的中点?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°
(1)观察猜想
将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN= 度.
(2)操作探究
将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;
(3)深化拓展
将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,若边CD恰好与边MN平行,请你求出此时旋转的角度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.
(1)求∠PCQ的度数;
(2)当AB=4,AP:BP=1:3时,求PQ的长;
(3)当点P在线段AC上运动时(P不与A、C重合),请写出一个反映PA2、PC2、PB2之间关系的等式,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com