分析 延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.
解答 解:延长AO交BC于D,作OE⊥BC于E,
∵∠A=∠B=60°,∴∠ADB=60°,
∴△ADB为等边三角形,![]()
∴BD=AD=AB=4,
∴OD=2,又∵∠ADB=60°,
∴DE=$\frac{1}{2}$OD=1,
∴BE=3,
∴BC=2BE=6,
故答案为6.
点评 本题主要考查了等边三角形的判定和性质以及垂径定理的应用,构建合适的辅助线,数形结合,找出有关线段的关系,是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1,-6 | B. | -1,-6 | C. | -1,6 | D. | 1,6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com