精英家教网 > 初中数学 > 题目详情

【题目】2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字之和为_____

【答案】11

【解析】

根据题意要求①②可得关于所要求的两数的两个等式,解出两数即可.

解:设图中两空白圆圈内应填写的数字从左到右依次为ab

∵外圆两直径上的四个数字之和相等

4+6+7+8=a+3+b+11

∵内、外两个圆周上的四个数字之和相等

3+6+b+7=a+4+11+8

联立①②解得:

a=2b=9

∴图中两空白圆圈内应填写的数字从左到右依次为29

2+9=11

故答案为:11

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.

(1)求证:AE⊥BF;

(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;

(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的边长为4时,直接写出四边形GHMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,A08),B40),直线y=﹣x沿x轴作平移运动,平移时交OAD,交OBC

1)当直线y=﹣x从点O出发以1单位长度/s的速度匀速沿x轴正方向平移,平移到达点B时结束运动,过点DDEy轴交AB于点E,连接CE,设运动时间为ts).

①是否存在t值,使得CDE是以CD为腰的等腰三角形?如果能,请直接写出相应的t值;如果不能,请说明理由.

②将CDE沿DE翻折后得到FDE,设EDFADE重叠部分的面积为y(单位长度的平方).求y关于t的函数关系式及相应的t的取值范围;

2)若点MAB的中点,将MC绕点M顺时针旋转90°得到MN,连接AN,请直接写出AN+MN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与y轴交于点A(0-4),与x轴交于点B(-20)C(80),连接ABAC

1)求出二次函数表达式;

2)若点N在线段BC上运动(不与点BC重合),过点NNMAB,交AC于点M,连接AN,当以点AMN为顶点的三角形与以点ABO为顶点的三角形相似时,求此时点N的坐标;

3)若点Nx轴上运动,当以点ANC为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年端午节期间,小华都要自制 AB 两种类型的粽子在线上线下进行销售,今年他经过市场调查发现,若制作 3 A 型粽子 2 B 型粽子需成本 11 元,若制作 2 A 型粽子 3 B 型粽子需成本 11.5 元.

(1)求今年制作 AB 两种类型的粽子每个的成本分别是多少元?

(2)由于今年的疫情,小华预计网上销售会大增,所以决定制作 A 型粽子 2000 个,B 型粽子 1000 个,并且统一售价每个 4 元,销售一段时间后,随着端午节的临近,小华把剩余的粽子打 8 折全部通过线上线下两种方式售出,在制作和销售过程中还产生了除成本以外其它费用合计 700 元,小华在这次买卖中赚到至少 4000 元,则打折销售的粽子最多是多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O为坐标原点,抛物线yax2+bx+cy轴交于点A06),与x轴交于点B(﹣20),C60).

1)直接写出抛物线的解析式及其对称轴;

2)如图2,连接ABAC,设点Pmn)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点PPDAC于点E,交x轴于点D,过点PPGABAC于点F,交x轴于点G.设线段DG的长为d,求dm的函数关系式,并注明m的取值范围;

3)在(2)的条件下,若PDG的面积为

①求点P的坐标;

②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠ABC135°,ABaBCb,点P是边AC上任意一点,连结BP,将△CPB沿PB翻折,得△C'PB

1)若ab6,∠C'PC90°,求CP的长;

2)连结AC',当以ABPC'为顶点的四边形是平行四边形时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,与弦所围成图形的外部的一定点,是弦上的一动点,连接于点.已知,设两点间的距离为两点间的距离为两点间的距离为

小石根据学习函数的经验,分别对函数随自变量的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:

1)按照下表中自变量的值进行取点、画图、测量分别得到了的几组对应值:

0

1

2

3

4

5

5.40

6

4.63

3.89

2.61

2.15

1.79

1.63

0.95

1.20

1.11

1.04

0.99

1.02

1.21

1.40

2.21

2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象;

3)结合函数图象,解决问题:当的中点时,的长度约为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:

我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.

理解:

(1)如图1,已知RtABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);

(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.

求证:BD是四边形ABCD的“相似对角线”;

(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若EFG的面积为2,求FH的长.

查看答案和解析>>

同步练习册答案