精英家教网 > 初中数学 > 题目详情

【题目】对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:

(a,b)★(c,d)=bc﹣ad.

例如:(1,2)★(3,4)=2×3﹣1×4=2.

根据上述规定解决下列问题:

(1)有理数对(2,﹣3)★(3,﹣2)=   

(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=   

(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2kx是整数时,求整数k的值.

【答案】(1)﹣5;(2)1;(3)k=﹣2,﹣11,﹣4

【解析】

1)原式利用题中的新定义计算即可求出值

2)原式利用题中的新定义计算即可求出x的值

3)原式利用题中的新定义计算求出整数k的值即可

1)根据题意得原式=﹣9+4=﹣5

故答案为:5

2)根据题意化简得2x1+3x+3=7移项合并得5x=5解得x=1

故答案为:1

3∵等式(﹣32x1kx+k)=5+2kx是整数2x1k﹣(﹣3)(x+k)=5+2k2k+3x=5x=

k是整数2k+3=±1或±5k=﹣2,﹣11,﹣4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两个仓库共存有粮食60解决下列问题,3个小题都要写出必要的解题过程:

1甲仓库运进粮食14,乙仓库运出粮食10后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?

2如果甲仓库原有的粮食比乙仓库的2倍少3,则甲仓库运出多少粮食给乙仓库,可使甲、乙两仓库粮食数量相等?

3甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1,乙仓库运进的数量是本仓库原有粮食数量加上8所得的和的一半求此时甲、乙两仓库共有粮食多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

(1)某文艺团体组织了一场义演为希望工程募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张

(2)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.

方案一:将蔬菜全部进行精加工.没来得及进行精加工的直接出售

方案二:尽可能多地对蔬菜进行粗加工,没有来得及进行加工的蔬菜,在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为选择哪种方案获利最多?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:5 16 8 4 2 1,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】世界读书日,新华书店矩形购书优惠活动:一次性购书不超过100元,不享受打折优惠;一次性购书超过100元但不超过200元一律八折;一次性购书200元以上一律打六折.小丽在这次活动中,两次购书总共付款190.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新学期开学,某体育用品商店开展促销活动,有两种优惠方案.

方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.

方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:

会员卡只限本人使用.

1)求该商店销售的乒乓球拍每副的标价.

2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,请回答下列问题:

①如果方案一与方案二所付钱数一样多,求a的值;

②直接写出一个恰当的a值,使方案一比方案二优惠;

③直接写出一个恰当的a值,使方案二比方案一优惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1 , B1C1交CD于点E,AB= ,则四边形AB1ED的内切圆半径为(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度( =1.7).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.

(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?

(2)P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;

查看答案和解析>>

同步练习册答案