精英家教网 > 初中数学 > 题目详情

【题目】某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.

(1)求两种球拍每副各多少元?

(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.

【答案】(1)直拍球拍每副220元,横拍球每副260元;(2)购买直拍球拍30副,则购买横拍球10副时,费用最少.

【解析】

(1)设直拍球拍每副x元,根据题中的相等关系:20副直拍球拍的价钱+15副横拍球拍的价钱=9000元;10副横拍球拍价钱-5副直拍球拍价钱=1600元,建立方程组即可求解;

(2)设购买直拍球拍m副,根据题意列出不等式可得出m的取值范围,再根据题意列出费用关于m的一次函数,并根据一次函数的性质解答即可.

解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,

解得,

答:直拍球拍每副220元,横拍球每副260元;

(2)设购买直拍球拍m副,则购买横拍球(40-m)副,

由题意得,m≤3(40-m),

解得,m≤30,

设买40副球拍所需的费用为w

w=(220+20)m+(260+20)(40-m

=-40m+11200,

-40<0,

wm的增大而减小,

m=30时,w取最小值,最小值为-40×30+11200=10000(元).

答:购买直拍球拍30副,则购买横拍球10副时,费用最少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,∠MBA=NDC,下列哪个条件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】无论m取什么实数,点A(m+1,2m﹣2)都在直线l上.若点B(a,b)是直线l上的动点,则(2a﹣b﹣6)3的值等于____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查过程如下,请补充完整,

收集数据:从甲、乙两个班各随机抽取10名学生进行身体素质测试测试成绩(百分制)如下:

甲班:65757580605075908565

乙班:90558070557095806570

1)整理描述数据:按如下分数段整理、描述这两组样本数据:

成绩x人数班级

50≤x<60

60≤x<70

70≤x<80

80≤x<90

90≤x<100

甲班

1

3

3

2

1

乙班

2

1

m

2

n

在表中:m=________n=________

2)分析数据:

①两组样本数据的平均数、中位数、众数如表所示:

班级

平均数

中位数

众数

甲班

75

x

75

乙班

72

70

y

在表中:x=________y=________

②若规定测试成绩在80(80)以上的学生身体素质为优秀请估计乙班50名学生中身体素质为优秀的学生有________人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象经过点,点,交y轴于点C,给出下列结论::b::2:3;,则对于任意实数m,一定有一元二次方程的两根为,其中正确的结论是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某工程队在工地利用互相垂直的两面墙AE、AF,另两边用铁栅栏围成一个长方形场地ABCD,中间再用铁栅栏分割成两个长方形,铁栅栏总长180米,已知墙AE90米,墙AF长为60米.

米,则CD______米,四边形ABCD的面积为______

若长方形ABCD的面积为4000平方米,问BC为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值,对于任意正实数a、b,可作如下变形a+b==-2+2=+2又∵≥0, +2≥0+ 2,即a+b ≥2

(1)根据上述内容,回答下列问题:在a+b≥2(a、b均为正实数)中,若ab为定值p,则a+b≥ 2,当且仅当a、b满足________时,a+b有最小值2

(2)思考验证:如图1,ABC中,∠ACB=90°,CDAB,垂足为D,COAB边上中线,AD=2a ,DB=2b, 试根据图形验证a+b≥2成立,并指出等号成立时的条件.

(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AB=20,面积为320,BAD<90°,O与边AB,AD都相切,AO=10,则O的半径长等于(

A.5 B.6 C.2 D.3

查看答案和解析>>

同步练习册答案