精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,以为直径的分别交两边于点,则的面积为( )

A. B. C. D.

【答案】A

【解析】

连接AE.根据圆周角定理易知AEBC;

由于ABC是等腰,根据等腰三角形三线合一的性质知EBC的中点,即CE=BE=1.

RtABE中,根据勾股定理即可求出AE的长,进而可求出ABC的面积.

根据圆内接四边形的外角等于内对角,可得出CDECBA的两组对应角相等,由此可判定两个三角形相似,已知了CE、AC的长,也就知道了两个三角形的相似比,根据相似三角形的面积比等于相似比的平方即可求得CDE的面积.

连接AE,则AEBC.

又∵AB=AC,

EBC的中点,即BE=EC=1.

RtABE中,AB=,BE=1,

由勾股定理得:AE=2.

SABC=BCAE=2.

∵四边形ABED内接于⊙O,

∴∠CDE=CBA,CED=CAB,

∴△CDE∽△CBA,

SCDE:SABC=CE2:AC2=1:5.

SCDE=SABC=

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图的ABC中,ABACBC,且DBC上一点。现打算在AB上找一点P,在AC上找一点Q,使得APQ与以PDQ为顶点的三角形全等,以下是甲、乙两人的作法:

甲:连接AD,作AD的中垂线分别交ABACP点、Q点,则PQ两点即为所求;

乙:过D作与AC平行的直线交ABP点,过D作与AB平行的直线交ACQ点,则PQ两点即为所求;

对于甲、乙两人的作法,下列判断何者正确(  )?

A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,顶角为36°的等腰三角形称为锐角黄金三角形.它的底与腰之比为≈0.618,记为k.受此启发,八年级数学课题组探究底角为36°的等腰三角形,也称钝角黄金三角形,如图2

(1)在图1和图2中,若DE=BC,求证:EF=AB

(2)求钝角黄金三角形底与腰的比值(用含k的式子表示)

(3)如图3,在钝角黄金三角形ABC中,ADDE依次分割出钝角黄金三角形ADCADE.若AB1,记ABCADCADE分别为第123个钝角黄金三角形,以此类推,求第2020个钝角黄金三角形的周长(用含k的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线过B(﹣2,6),C(2,2)两点.

(1)试求抛物线的解析式;

(2)记抛物线顶点为D,求△BCD的面积;

(3)若直线向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中弦相交于点平分,则下列结论中不正确的是( )

A. AB=CD B. 弧AC=弧BD

C. PA=PD D. 弧AC=弧BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一圆弧形桥拱的圆心为,拱桥的水面跨度米,桥拱到水面的最大高度米.求:

桥拱的半径;

现水面上涨后水面跨度为米,求水面上涨的高度为________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数 yax2bxc(a≠0)的图象的一部分,给出下列命题:①abc0b2aax2bxc0的两根分别为-31a2bc0.其中正确的命题是( )

A. ①② B. ②③ C. ①③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A0m),Bn0),(mn0),点EAD上,AEAB,点Fy轴上,OFOBBF的延长线与DA的延长线交于点MEFAB交于点N

1)试求点E的坐标(用含mn的式子表示);

2)求证:AMAN

3)若ABCD12cmBC20cm,动点PB出发,以2cm/s的速度沿BCC运动的同时,动点QC出发,以vcm/s的速度沿CDD运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案