【题目】如图,点A在反比例函数(x<0)的图象上,连接OA,分别以点O和点A为圆心,大于的长为半径作弧,两弧相交于B,C两点,过B,C两点作直线交x轴于点D,连接AD.若∠AOD=30°,△AOD的面积为2,则k的值为( )
A.﹣6B.6C.﹣2D.﹣3
【答案】A
【解析】
过A作AE⊥x轴于E,根据BC垂直平分AO,即可得到AD=OD,S△ADF=S△ODF=1,进而得出△ADE≌△ADF(AAS),可得S△AOE=3,再根据反比例函数系数k的几何意义,即可得到k的值.
解:如图,过A作AE⊥x轴于E,
依据作图可得,BC垂直平分AO,
∴AD=OD,S△ADF=S△ODF=1,
∴∠AOD=∠OAD=30°,
∴∠ADE=60°,
∴∠DAE=∠DAF=30°,
又∵∠AED=∠AFD=90°,AD=AD,
∴△ADE≌△ADF(AAS),
∴S△AOE=3,
∵点A在反比例函数y= (x<0)的图象上,
∴|k|=3,
解得k=±6,
又∵k<0,
∴k=-6,
故选A.
科目:初中数学 来源: 题型:
【题目】已知:二次函数C1:y1=ax2+2ax+a-1(a≠0).
(1)把二次函数C1的表达式化成y=a(x-h)2+b(a≠0)的形式 ,并写出顶点坐标 ;
(2)已知二次函数C1的图象经过点A(-3,1).
①a的值 ;
②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,则k的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图像经过点A(4,4),B(5,0)和原点O,点P为抛物线上的一个动点,过点P作x轴的垂线,垂足为D(m,0)(m>0),并与直线OA交于点C.
(1)求出抛物线的函数表达式;
(2)连接OP,当S△OPC=S△OCD时,求出此时的点P坐标;
(3)在直线OA上取一点M,使得以P、C、M为顶点的三角形与△OCD全等,求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.
(1)求甲、乙两工程队每天各完成多少米?
(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数(≠)的图象与反比例函数 ()的图象交于A、B两点,与轴交于C点,点A的坐标为(,6),点C的坐标为(-2,0),且.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)利用图象求不等式:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+1与x轴相交于点A,B,与y轴相交于点C,点A的坐标为(﹣1,0),对称轴为直线x=1.
(1)求点B的坐标及抛物线的解析式;
(2)在直线BC上方的抛物线上有一点P,使△PBC的面积为1,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,D是AB上一点,已知AC=10,AC2=AD·AB.
(1)证明△ACD∽△ABC.
(2)如图2,过点C作CE∥AB,且CE=6,连结DE交BC于点F;
①若四边形ADEC是平行四边形,求的值;
②设AD=x,=y,求y关于x的函数表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com