分析 (1)延长AP,DE,相交于点F,利用平行线的判定定理可得AB∥DE,由全等三角形的判定可得△ABP≌△FEP,利用全等三角形的性质和等腰三角形的性质可得结果;
(2)延长AP到点F,使PF=AP,连接DF,EF,AD,首先由全等三角形的判定定理可得△BPA≌△EPF,由全等三角形的性质可得AC=FE,利用多边形的内角和定理可得∠ACD=∠FED,可证得△ACD≌△FED,可得AD=FD,可得结论;
(3)连接AP,AD,易知∠ACD=90°,所以AD=$\sqrt{5}$,在Rt△APD中,∠PAD=30°,所以,PD=$\frac{\sqrt{5}}{2}$.
解答 (1)解:如图1,延长AP,DE,相交于点F,![]()
∵∠BAC=60°,∠CDE=120°
∴∠BAC+∠CDE=180°,
∵A,C,D三点共线,
∴AB∥DE,
∴∠B=∠PEF,∠BAP=∠EFP,
在△ABP与△FEP中,
$\left\{\begin{array}{l}{∠BAP=∠EFP}\\{∠B=∠PEF}\\{BP=PE}\end{array}\right.$,
∴△ABP≌△FEP(AAS),![]()
∴AB=FE,
∵AB=AC,DC=DE,
∴AD=DF
∴∠PAC=∠PFE,
∵∠CDE=120°,
∴∠PAC=30°;
(2)证明:如图2,延长AP到点F,使PF=AP,连接DF,EF,AD,
在△BPA与△EPF中,
$\left\{\begin{array}{l}{PF=AP}\\{∠EPF=∠BPA}\\{PE=PB}\end{array}\right.$,
∴△BPA≌△EPF(SAS),
∴AB=FE,∠PBA=∠PEF,
∵AC=BC,
∴AC=FE,
在四边形BADE中,∵∠BAD+∠ADE+∠DEB+∠EBA=360°,
∵∠BAC=60°,∠CDE=120°,
∴∠CAD+∠ADC+∠DEB+∠EBA=180°.
∵∠CAD+∠ADC+∠ACD=180°,
∴∠ACD=∠DEB+∠EBA,
∴∠ACD=∠FED,
在△ACD与△FED中,
$\left\{\begin{array}{l}{AC=FE}\\{∠ACD=∠FED}\\{CD=DE}\end{array}\right.$,
∴△ACD≌△FED(SAS),
∴AD=FD,
∵AP=FP,
∴AP⊥DP;
(3)解:连接AP,AD,
∵∠BAC=60°,AB=AC,
∴△ABC为等边三角形,
∴∠ACB=60°,
∵DC=DE,∠CDE=120°,
∴∠DCE=30°,
∴∠ACD=90°,
∵AB=AC=1,CD=2,
∴AD=$\sqrt{5}$,
由(2)知,AP⊥PD,
∴A、C、P、D四点共圆,![]()
∵∠PCD=30°,
∴∠PAD=30°,
∵在Rt△APD中,∠PAD=30°,
∴PD=$\frac{\sqrt{5}}{2}$.
点评 本题主要考查了全等三角形的性质、等腰三角形的性质和勾股定理等,作出恰当的辅助线,证得三角形全等是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com