【题目】如图,等边△ABC的边长为12, D为AB边上一动点,过点D作DE⊥BC于点E.过点E作EF⊥AC于点F.
(1)若AD=2,求AF的长;
(2)当AD取何值时,DE=EF?
【答案】(1);(2)当AD=4时,DE=EF.
【解析】
(1)根据已知条件得出△BDE和△CEF都是含30°的直角三角形,再根据含30°的直角三角形性质计算即可;
(2)当DE=EF时,可得出,进而根据BD=CE列出关于AD的等式,解出即可.
解:∵等边△ABC的边长为12,
∴∠B=∠C=60°,AB=BC=AC=12,
又∵DE⊥BC,EF⊥AC,
∴∠BED=∠CFE=90°,
∴∠BDE=∠CEF=30°,
若AD=2,
则BD=12-2=10,
∴在Rt△BDE中,,
∴CE=BC-BE=12-5=7,
∴在Rt△CEF中,,
∴
故.
(2)当DE=EF时,
在△BDE和△CEF中
∴(AAS)
∴BD=CE
设AD=x
则,
∴,
∴
∴
解得:
∴当AD=4时,DE=EF.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点
(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,求点P的坐标(直接写出答案);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,长方形OABC,点A,C分别在x轴,y轴的正半轴上,点B(6,3),现将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P.则点P的坐标为( )
A.(,3)B.(,3)C.(,3)D.()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,∠QPN的顶点P在正方形ABCD两条对角线交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是________;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为________,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,当点E落在线段AD的延长线上时,探究DE,DF,AD之间的数量关系(直接写出结论,不用加以证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)直接写出C点的坐标;
(2)求抛物线的解析式;
(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t= 分钟时甲乙两人相遇,乙的速度为 米/分钟;
(2)求点A的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距和身高成如下所示的关系.
(1)直接写出身高与指距的函数关系式: .
(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(2,0)、B(﹣4,0)两点,与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC、AC上.
(I)求抛物线的解析式;
(II)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(III)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=kDF.若点M在抛物线上,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?
(2)学校计划制作1000个吉祥物作为运动会纪念.现有甲、乙两个工厂可以生产这种吉祥物.
甲工厂报价:不超过400个时每个吉祥物20元,400个以上超过部分打七折;但因生产条件限制,截止到学校交货日期只能完成800个;乙工厂报价每个吉祥物18元,但需运费400元.问:学校怎样安排生产可以使总花费最少,最少多少钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com