【题目】如图.△ABC中,∠ACB=70°,将△ABC绕点B按逆时针方向旋转得到△BDE(点D与点A是对应点,点E与点C是对应点),且边DE恰好经过点C,则∠ABD的度数为( )
A.30°B.40°C.45°D.50°
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的坐标为(,),点Q的坐标为(,),且,,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q 的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(3,﹣2)、B(﹣2,n)两点,与x轴交于点C.
(1)求k2,n的值;
(2)请直接写出不等式k1x+b>的解集;
(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A'B、A'C,求△A'BC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O在ABCD的AD边上,⊙O经过A、B、C三点,点E在⊙O外,且OE⊥BC,垂足为F.
(1)若EC是⊙O的切线,∠A=65°,求∠ECB的度数;
(2)若OF=4,OD=1,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC的AB边为圆O的弦,AC、BC分别交圆O于D、E,弧AD=弧BE,∠C=60°;
(1)求证:△ABC为等边三角形;
(2)如图2,F为弧AD上一点,连接FE并延长至G,连接BG,若∠AFB=∠G,求∠FBG的正弦值;
(3)如图3,在(2)的条件下,连接FC并延长交BG延长线于H,若CF=CH,AF=7,HG=12,求线段BF的长度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=,y=﹣2018x2+2019,y=2018x2共有的性质是( )
A.开口向上
B.对称轴是y轴
C.当x>0时,y随x的增大而增大
D.都有最低点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB于点Q,D.
(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;
(2)在(1)问的条件下:
①如图2,连结CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.
②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).
(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com