【题目】如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC;
(2)求y与x之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
【答案】(1)x= 1.5s时;(2)S四边形OAHP=x2+x+3(0<x<3);(3)x=(s)时.
【解析】
(1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.
(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.
(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.
解:(1)∵Rt△EFG∽Rt△ABC
∴,即,
∴FG==3cm
∵当P为FG的中点时,OP∥EG,EG∥AC
∴OP∥AC
∴x==×3=1.5(s)
∴当x为1.5s时,OP∥AC.
(2)在Rt△EFG中,由勾股定理得EF=5cm
∵EG∥AH
∴△EFG∽△AFH
∴,
∴AH=(x+5),FH=(x+5)
过点O作OD⊥FP,垂足为D
∵点O为EF中点
∴OD=EG=2cm
∵FP=3﹣x
∴S四边形OAHP=S△AFH﹣S△OFP
=AHFH﹣ODFP
=(x+5)(x+5)﹣×2×(3﹣x)
=x2+x+3(0<x<3).
(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:24
则S四边形OAHP=×S△ABC
∴x2+x+3=××6×8
∴6x2+85x﹣250=0
解得x1=,x2=﹣(舍去)
∵0<x<3
∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:24.
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=56°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠B=90°,AB∥ED ,交BC于E,交 AC于F, DE = BC,.
(1) 求证:△FCD 是等腰三角形
(2) 若AB=3.5cm,求CD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.点P是y轴上一点.
(1)写出下列各点的坐标:点A( , )、点B( , )、点C( , );
(2)若S△COP=S△COA,请求出点P的坐标;
(3)当PA+PC最短时,求出直线PC的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省嘉兴市,第20题,8分)如图,一次函数()与反比例函数()的图象交于点A(﹣1,2),B(m,﹣1).
(1)求这两个函数的表达式;
(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①△BDF≌△CDE;②CE=BF; ③BF∥CE;④△ABD和△ACD周长相等.其中正确的有___________(只填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.
(1)求证:AE=BD;
(2)请判断△CMN的形状,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF
(1)求证:AD=CF;
(2)如果AB=AC,四边形ADCF的形状为 (直接写出结果);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是( )
A. (,0)B. (,0)C. (,0)D. (,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com