【题目】材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.
例:解方程:(x﹣2)4+(x﹣3)4=1
解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,
去括号,得:(y2+y+)2+(y2﹣y+)2=1
y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1
整理,得:2y4+3y2﹣ =0(成功地消去了未知数的奇次项)
解得:y2=或y2=(舍去)
所以y=±,即x﹣=±.所以x=3或x=2.
(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.
设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.
(2)用这种方法解方程(x+1)4+(x+3)4=706
【答案】(1)4,4,1,1;(2)x=2或x=﹣6.
【解析】
(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;
(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.
(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,
故答案为4,4,1,1;
(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,
去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,
y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,
整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),
解得:y2=16或y2=﹣22(舍去)
所以y=±4,即x+2=±4.所以x=2或x=﹣6.
科目:初中数学 来源: 题型:
【题目】对于反比例函数,下列说法正确的个数是( )
①函数图象位于第一、三象限;②函数值 y 随 x 的增大而减小;③若 A(-1, ),B(2,),C(1,)是图象上三个点,则 <<;④P 为图象上任一点,过 P 作 PQ⊥y 轴于点 Q,则△OPQ 的面积是定值.
A.1 个B.2 个C.3 个D.4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为8,是的中点,是边上的动点,连结,以点为圆心,长为半径作.
(1)当________时,;
(2)当与正方形的边相切时,求的长;
(3)设的半径为,请直接写出正方形中恰好有两个顶点在圆内的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:
如图①,在中,若,,求边上的中线的取值范围.
可以用如下方法:将绕着点逆时针旋转得到,在中,利用三角形三边的关系即可判断中线的取值范围是______;
(2)问题解决:
如图②,在中,是边上的中点,于点,交于点,交于点,连接,求证:;
(3)问题拓展:
如图③,在四边形中,,,,以为顶点作一个的角,角的两边分别交、于、两点,连接,探索线段,,之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.
(1)求证:△ADC≌△BEC;
(2)如果EC⊥BE,证明:AD∥EC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水8吨以内(包括8吨)和用水8吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图所示.
(1)求出自来水公司在这两个用水范围内的收费标准;
(2)若芳芳家6月份共交水费28.1元,请写出用水量超过8吨时应交水费y(元)与用水量x(吨)之间的函数关系,并求出芳芳家6月份的用水量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线、是紧靠某湖泊的两条相互垂直的公路,曲线段是该湖泊环湖观光大道的一部分.现准备修建一条直线型公路,用以连接两条公路和环湖观光大道,且直线与曲线段有且仅有一个公共点.已知点到、的距离分别为和,点到的距离为,点到的距离为.若分别以、为轴、轴建立平面直角坐标系,则曲线段对应的函数解析式为.
(1)求的值,并指出函数的自变量的取值范围;
(2)求直线的解析式,并求出公路的长度(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华和妈妈到大足北山游玩,身高1.5米的小华站在坡度为的山坡上的点观看风景,恰好看到对面的多宝塔,测得眼睛看到塔顶的仰角为,接着小华又向下走了米,刚好到达坡底,这时看到塔顶的仰角为,则多宝塔的高度约为( ).(精确到0.1米,参考数据:)
A.51.0米B.52.5米C.27.3米D.28.8米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com