【题目】一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……,则正方形A2020B2020C2020D2020的边长是( )
A.()2017B.()2018C.()2019D.()2020
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.
(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.
求证:∠EAB=∠GHC;
(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.
①依题意补全图形;
图1 备用图
②用等式表示线段AE与CN之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,左右两边修两条宽为米的道路.().
(1)①试用含的代数式表示绿化的面积是多少平方米?
②假设阴影部分可以拼成一个矩形.请你求出所拼矩形相邻两边的长:如果要使所拼矩形面积最大,求与满足的关系式;
(2)若,请求出绿化面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与x轴交于A、B两点(A在B的左侧),与y轴的正半轴交于点C,顶点为D,对称轴与直线BC交于点E,且CE :BE=1 :2,连接BD,作CF//AB交抛物线对称轴于点H,交BD于点F.
(1)写出A、B两点的坐标:A( , ),B( , )
(2)若四边形BEHF的面积为,求抛物线的函数表达式;
(3)在(2)的条件下,抛物线对称轴上是否存在点M,使得∠CMF=∠CBF,若存在,请求出M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:
(1)求n的值;
(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;
(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表
兴趣班 | 频数 | 频率 |
合计 |
请你根据统计表中提供的信息回答下列问题:
(1)统计表中的_____, ;
(2)根据调查结果,请你估计该市名小学生中最喜欢“绘画”兴趣班的人数;
(3)王强和李昊选择参加兴趣班,若王强从三类兴趣班中随机选取一类,李吴从三类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类兴趣班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.
将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.
如图2,作B关于直线l的对称点B′,连结AB′与直线l交于点C,点C就是所求的位置.
证明:如图3,在直线l上另取任一点C′,连结AC′,BC′,B′C′,
∵直线l是点B,B′的对称轴,点C,C′在l上,
∴CB=CB′,C′B=C′B′,
∴AC+CB=AC+ = .
在△AC′B′中,
∵AB′<AC′+C′B′
∴AC+CB<AC′+C′B′即AC+CB最小.
本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(其中C在AB′与l的交点上,即A、C、B′三点共线).本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型.
1.简单应用
(1)如图4,在等边△ABC中,AB=6,AD⊥BC,E是AC的中点,M是AD上的一点,求EM+MC的最小值
借助上面的模型,由等边三角形的轴对称性可知,B与C关于直线AD对称,连结BM,EM+MC的最小值就是线段 的长度,则EM+MC的最小值是 ;
(2)如图5,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M、N当△AMN周长最小时,∠AMN+∠ANM= °.
2.拓展应用
如图6,是一个港湾,港湾两岸有A、B两个码头,∠AOB=30°,OA=1千米,OB=2千米,现有一艘货船从码头A出发,根据计划,货船应先停靠OB岸C处装货,再停靠OA岸D处装货,最后到达码头B.怎样安排两岸的装货地点,使货船行驶的水路最短?请画出最短路线并求出最短路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是十堰市的三个旅游景点:丹江口的武当山、房县的野人洞、郧西县的五龙河的部分门票价格表.某单位在国庆长假前期给每人购买了一张门票,现将购买门票的情况绘制成如图所示的柱状统计图.
景点 | 标价(元/张) |
武当山 | 200 |
野人洞 | |
五龙河 | 80 |
请依据上表、图回答下列问题:
(1)去武当山旅游的门票有________张,购买去野人洞旅游的门票占所有门票张数的____________.
(2)若该单位采取随机抽取的方式把门票分配给员工,在看不到门票的前提下,每人抽取一张(所有门票形状、大小、颜色等完全相同且充分洗匀).问员工小红抽取去武当山的门票的概率是___________.
(3)若购买去五龙河的总款数占全部款数的.试求出每张野人洞门票的价格.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com