【题目】如图,已知的顶点,,点在轴的正半轴上,按以下步骤作图:①以点为圆心、适当长度为半径作弧,分别交、于点,;②分别以点,为圆心、大于的长为半径作弧,两弧在内交于点;③作射线,交边于点.则点的坐标为( )
A. B. C. D.
科目:初中数学 来源: 题型:
【题目】学着说点理:补全证明过程:
如图,已知,,垂足分别为,,,试证明:.请补充证明过程,并在括号内填上相应的理由.
证明:∵,(已知)
∴(___________________),
∴(___________________),
∴________(___________________).
又∵(已知),
∴(___________________),
∴________(___________________),
∴(___________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在八年级举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查30名学生的听写汉字的正确字数如下:
2 | 9 | 17 | 24 | 33 | 5 | 12 | 19 | 26 | 34 |
7 | 14 | 20 | 26 | 36 | 15 | 22 | 26 | 39 | 31 |
22 | 27 | 39 | 22 | 28 | 23 | 23 | 31 | 30 | 28 |
对这30个数据按组距8进行分组,并统计整理.
(1)请完成下面频数分布统计表;
组别 | 正确字数x | 频数 |
A | 0≤x<8 | |
B | 8≤x<16 | |
C | 16≤x<24 | |
D | 24≤x<32 | |
E | 32≤x<40 |
(2)在上图中请画出频数分布直方图;
(3)若该校八年级学生共有1200人,如果听写正确的个数少于24个定为不合格,请你估计该校八年级本次比赛听写不合格的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能订共1200只,这两种节能灯的进价、售价如下表:
(1)如何进货,进货款恰好为46000元?
(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请同乙型节能灯需打几折?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(xk)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A. 球不会过网 B. 球会过球网但不会出界
C. 球会过球网并会出界 D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车都从A地出发,在路程为360千米的同一道路上驶向B地.甲车先出发匀速驶向B地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时小时,结果与甲车同时到达B地.
(1)甲车的速度为 千米/时;
(2)求乙车装货后行驶的速度;
(3)乙车出发 小时与甲车相距10千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=x2+bx+c经过点A,B.
(1)求抛物线解析式;
(2)点C(m,0)在线段OA上(点C不与A,O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;
(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.
(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);
(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)以下四边形中,是勾股四边形的为 .(填写序号即可)
①矩形;②有一个角为直角的任意凸四边形;③有一个角为60°的菱形.
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,∠DCB=30°,连接AD,DC,CE.
①求证:△BCE是等边三角形;
②求证:四边形ABCD是勾股四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com