【题目】如图,点A,B在数轴上表示的数分别为-2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.
(1)当Q为AB的中点时,求线段PQ的长;
(2)当Q为PB的中点时,求点P表示的数.
【答案】(1)2;(2)
【解析】
(1)根据两点间的距离公式得出AB=8,根据线段中点的定义得出QB=4,根据路程除以速度等于时间得出当点Q为AB中点的时候,运动时间是1秒,此时AP=2,由PQ= AB-AP-BQ 即可算出答案;
(2) 设点P,Q的运动时间为t秒,则AP=2t,BQ=4t , PQ=AB-AP-BQ=8-6t ,根据线段中点的定义得出 PQ=BQ ,从而列出方程,求解即可.
(1)解:∵Q为AB的中点,AB=8,
OB=AB=4.
∵点Q的运动速度为每秒4个单位长度,
∴点Q的运动时间为1秒.
∵点P的运动速度为每秒2个单位长度,
∴点P的运动路程为2个单位长度,即AP=2.
∴PQ=AB-AP-BQ=2
(2)解:设点P,Q的运动时间为t秒,则AP=2t,BQ=4t,
∴PQ=AB-AP-BQ=8-6t,
∵Q为PB的中点,
∴PQ=BQ,即8-6t=4t,
∴t= ,∴AP=,
∵-2=,
∴点P表示的有理数是.
科目:初中数学 来源: 题型:
【题目】如图 1,二次函数的图像过点 A (3,0),B (0,4)两点,动点 P 从 A 出发,在线段 AB 上沿 A → B 的方向以每秒 2 个单位长度的速度运动,过点P作 PD⊥y 于点 D ,交抛物线于点 C .设运动时间为 t (秒).
(1)求二次函数的表达式;
(2)连接 BC ,当t=时,求△BCP的面积;
(3)如图 2,动点 P 从 A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 O→A 的方向以 1个单位长度的速度运动,当点 P 与 B 重合时,P 、 Q 两点同时停止运动,连接 DQ 、 PQ ,将△DPQ沿直线 PC 折叠到 △DPE .在运动过程中,设 △DPE 和 △OAB重合部分的面积为 S ,直接写出 S 与 t 的函数关系式及 t 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′= ,则称点Q为点P的“可控变点”。例如:点(1,2)的“可控变点”为点(1,2).
结合定义,请回答下列问题:
(1)点(3,4)的“可控变点”为点 ___.
(2)若点N(m,2)是函数y=x1图象上点M的“可控变点”,则点M的坐标为___;
(3)点P为直线y=2x2上的动点,当x0时,它的“可控变点”Q所形成的图象如图所示(实线部分含实心点).请补全当x<0时,点P的“可控变点”Q所形成的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y=x+m与y=在第一象限交于点A,且与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.
(1)求m的值;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在抛物线图像上,点在 y 轴上,若A1B0B1 、A2B1B2、…、An Bn-1Bn都为等腰直角三角形(点B0是坐标原点处),则的腰长等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一条数轴在原点和点处各折一下,得到一条“折线数轴”,图中点表示-12,点表示10,点表示20,我们称点和点在数轴上相距32个长度单位.动点从点出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点运动到点期间速度变为原来的一半,之后立刻恢复原速;同时,动点从点出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点运动到点期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为秒.则:
(1)动点从点运动至点需要时间多少秒?
(2)若,两点在点处相遇,则点在折线数轴上所表示的数是多少?
(3)求当为何值时,、两点在数轴上相距的长度与、两点在数轴上相距的长度相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大正方形内有两个大小一样的长方形ABCD和长方形EFGH,且AB,AD,EF,EH分别在大正方形的四条边上,大正方形内有个小正方形与两长方形有重叠(图中两个长方形形状的阴影部分),若B两正方形的周长分别为44与30,且AB=EH=6,AD=EF=3,则两阴影部分的周长和为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,
求证:①△ABG≌△AFG;②BG=CG
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com