【题目】在平面直角坐标系中,抛物线经过两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为,将直线沿轴向下平移两个单位得到直线,直线与抛物线的对称轴交于点,求直线的解析式;
(3)在(2)的条件下,求到直线距离相等的点的坐标.
【答案】(1)y=(2)y=x(3)M(,0)、A(0,2)、(0,-2)、(,0)
【解析】
试题(1)把坐标代入抛物线解析式即可.
(2)先设出平移后的直线的解析式,然后根据(1)的抛物线的解析式求出点的坐标,然后将点的坐标代入直线中即可得出直线的解析式.
(3)本题关键是找出所求点的位置,根据此点到直线的距离都相等,因此这类点应该有4个,均在的内角平分线上(外有3个,三条角平分线的交点是一个),可据此来求此点的坐标.
试题解析:(1)根据题意得
解得
所以抛物线的解析式为:
(2)由得抛物线的顶点坐标为
依题意,可得 且直线过原点,
设直线的解析式为y=kx,则
解得
所以直线l的解析式为
(3)到直线OB、OC、BC距离相等的点有四个,如图,
由勾股定理得OB=OC=BC=2,所以△OBC为等边三角形.
易证x轴所在的直线平分∠BOC,y轴是△OBC的一个外角的平分线,
作∠BCO的平分线,交x轴于点,交y轴于点,
作△OBC的∠BCO相邻外角的角平分线,交y轴于 点,
反向延长线交x轴于 点,可得点就是到直线OB、OC、BC距离相等的点.
可证均为等边三角形,可求得:
① 所以点的坐标为
②点与点A重合,所以点的坐标为(0,2),
③点 与点A关于x轴对称,所以点的坐标为(0,2),
④设抛物线的对称轴与x轴的交点为N,
且
所以点的坐标为
综合所述,到直线OB、OC、BC距离相等的点的坐标分别为:
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(-3,n)两点.
(1)求一次函数的解析式;
(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=60°,BE=2,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实践与应用:
一个西瓜放在桌子上用刀切下去,一刀可以切成2块,2刀最多可以切成4块;3刀最多可以切成7块,4刀最多可以切成11块(如图).
上述问题转化为数学模型实际上就是n条直线最多把平面分成几块的问题,有没有规律呢?请先进行试验,然后回答以下问题.
(1)填表:
(2)设n条直线把平面最多分成的块数是S,请写出S关于n的表达式.(不需要解题过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,弦AB、CD互相垂直,垂足为E,点M在CD上,连接AM并延长交BC于点F,交圆上于点G,连接AD,AD=AM.
(1)如图1,求证:AG⊥BC;
(2)如图2,连接EF,DG,求证:EF∥DG;
(3)如图3,在(2)的条件下,连接BG,若∠ABG=2∠BAG,EF=15,AB=32,求BG长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分) “先学后教”课题组对学生参与小组合作的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.课题组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了______名学生;
(2)请将条形统计图补充完整;
(3)求出扇形统计图中,“主动质疑”所对应扇形的圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.
(1)当参加旅游的人数不超过10人时,人均收费为 元;
(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com