精英家教网 > 初中数学 > 题目详情
2.如图:二次函数y=ax2+bx+c的图象所示,下列结论中:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2,正确的个数为(  )
A.1个B.2个C.3个D.4个

分析 根据抛物线开口向下,对称轴在y轴右侧,以及抛物线与坐标轴的交点,结合图象即可作出判断.

解答 解:由题意得:a<0,c>0,-$\frac{b}{2a}$=1>0,
∴b>0,即abc<0,选项①错误;
-b=2a,即2a+b=0,选项②正确;
当x=1时,y=a+b+c为最大值,
则当m≠1时,a+b+c>am2+bm+c,即当m≠1时,a+b>am2+bm,选项③正确;
由图象知,当x=-1时,ax2+bx+c=a-b+c<0,选项④错误;
∵ax12+bx1=ax22+bx2
∴ax12-ax22+bx1-bx2=0,(x1-x2)[a(x1+x2)+b]=0,
而x1≠x2
∴a(x1+x2)+b=0,
∴x1+x2=-$\frac{b}{a}$=-$\frac{-2a}{a}$=2,所以⑤正确.
所以②③⑤正确,共3项,
故选C.

点评 此题考查了二次函数图象与系数的关系,解本题的关键二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,在等腰△ABC中,AB=AC,点P在直线BC上运动,并且PD⊥AB于点D,PE⊥AC于点E,CF⊥AB于点F,请在以下不同图形中讨论:线段PD,PE,CF之间存在什么数量关系?证明你的观点,在讨论过程中,你发现了什么规律,能用一句话概括出来吗?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知点P(3,-4)绕O逆时针旋转90°得到对应点P′的坐标为(4,3).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.$\sqrt{(-5)^2}$+(2-π)0-$\sqrt{3}$sin60°=4.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.
(1)如图1,若∠ADB=120°,AC=2$\sqrt{3}$,求DE的长;
(2)如图2,若BE=2CD,连接CE并延长交AB于点F,求证:CF=3EF;
(3)如图3,若BE⊥AD,垂足为点E,猜想AE,BE,BD之间的数量关系,直接写出关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:
(1)参加朗诵比赛的学生共有40人,并把条形统计图补充完整;
(2)扇形统计图中,m=10,n=40;C等级对应扇形有圆心角为144度;
(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:
(1)-|-1|+$\sqrt{12}$•cos30°-(-$\frac{1}{2}$)-2+(π-3.14)0
(2)(x-y)2-(x-2y)(x+y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,平面直角坐标系建立在边长为1个单位长度的小正方形组成的网格中,格点△ABC的顶点在网格线的交点上,将△ABC绕旋转中心P逆时针旋转90°后得到△A1B1C1
(1)直接写出旋转中心P的坐标;
(2)画出△A2B2C2,使△A2B2C2与△A1B1C1关于x轴对称,并写出C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,以数轴的单位长度线段为边作一个正方形,以原点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是(  )
A.1B.-1C.1-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案