【题目】如图,E是正方形ABCD的边DC上的一点,过A作AF⊥AE,交CB延长线于点F.AE的延长线交BC的延长线于点G.
(1)求证:AE=AF;
(2)若AF=7,DE=2,求EG的长.
【答案】(1)见解析;(2).
【解析】分析:(1)首先利用余角的性质证明∠FAB=∠DAE,然后利用ASA即可证明△ABF≌△ADE,根据全等三角形的对应边相等即可证得;
(2)在直角△ABF中利用勾股定理求得AB的长,则EC的长度即可求得,易证△ADE∽△GCE,根据相似三角形的对应边的比相等即可求解.
详解:(1)证明:正方形ABCD中,∠BAD=90°,AD=AB,
∵AF⊥AE,∴∠FAB+∠BAE=90°.
∵∠DAE+∠BAE=90°,
∴∠FAB=∠DAE.
∵∠FBA=∠D=90°,
∴△ABF≌△ADE.
∴AE=AF.
(2)解:在Rt△ABF中,∠FBA=90°,AF=7,BF=DE=2.
∴AB=,
∴EC=DC-DE=.
∵∠D=∠ECG=90°,∠DEA=∠CEG,
∴△ADE∽△GCE.
∴
∴EG=.
科目:初中数学 来源: 题型:
【题目】“奔跑吧,兄弟!”节目组预设计一个新游戏:“奔跑”路线A、B、C、D四地,如图A、B、C三地在同一直线上,D在A北偏东30°方向,在C北偏西45°方向,C在A北偏东75°方向,且BD=BC=40m,从A地到D地的距离是_____m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,OB是∠AOC的平分线,OD是∠COE的平分线.
(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度数;
(2)若∠AOE=160°,∠COD=40°,求∠AOB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接五一节,重百超市计划销售枇杷和樱桃两种水果共5000千克,若枇杷的数量是樱桃的2倍少1000千克.
(1)超市计划销售枇杷多少千克?
(2)若超市从某一果园直接进货,果园共30名员工负责采摘这两种水果,每人每天能够采摘30千克枇杷或10千克樱桃,应分别安排多少人采摘枇杷和樱桃,才能确保采摘两种水果所用的时间相同?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读解题过程,回答问题.
如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.
解:过O点作射线OM,使点M,O,A在同一直线上.
因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
污水处理设备 | A型 | B型 |
价格(万元/台) | m | m-3 |
月处理污水量(吨/台) | 220 | 180 |
(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为2a ,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.
(1)图2的阴影部分的正方形的边长是 ______.
(2)用两种不同的方法求图中阴影部分的面积.
(方法1)= _____________;
(方法2)=______________;
(3)观察如图2,写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了天中每天行驶的路程(如下表),以为标准,多于的记为“”,不足的记为“”,刚好的记为“”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程 |
(1)请求出这天中平均每天行驶多少千米?
(2)若每行驶需用汽油升,汽油价元/升,计算小明家这天的汽油费用大约是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com