【题目】在由6个大小相同的小正方形组成的方格中:
(1)如图(1),△ABC 的三个顶点A、B、C都在格点上,试判断△ABC的形状,并加以证明;
(2)如图(2),连结三格和两格的对角线,利用(1)的图形特征,求出∠α+∠β的度数.
【答案】(1)△ABC是等腰直角三角形,理由见详解;(2)∠α+∠β=45°,理由见详解.
【解析】
(1)如图(1),根据勾股定理,判断出AB2+BC2=AC2,即可推得△ABC是直角三角形,又AB=BC,即可得到结论.
(2)如图(2),根据勾股定理,判断出AB2+BC2=AC2,即可推得△ABC是等腰直角三角形,据此求出∠α+∠β的度数是多少即可.
解:(1)如图(1),
由勾股定理得,AB2=12+22=5,
BC2=12+22=5,
AC2=12+32=10,
∴AB2+BC2=AC2,AB=BC,
∴△ABC是等腰直角三角形;
(2)∠α+∠β=45°.
证明:如图(2),
,
由勾股定理得,AB2=12+22=5,
BC2=12+22=5,
AC2=12+32=10,
∴AB2+BC2=AC2,
∴△ABC是直角三角形,
∵AB=BC,
∴△ABC是等腰直角三角形,
∴∠α+∠β=45°.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系上有个点,点第1次向上跳动1个单位至点,紧接着第2次向右跳动2个单位至点,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点第2019次跳动至点的坐标是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有( )个平行四边形
A.22B.24C.26D.28
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的两个一元二次方程:
方程①: ;
方程②:x2+(2k+1)x﹣2k﹣3=0.
(1)若方程①有两个相等的实数根,求:k的值
(2)若方程①和②只有一个方程有实数根,请说明此时哪个方程没有实数根.
(3)若方程①和②有一个公共根a,求代数式(a2+4a﹣2)k+3a2+5a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,点P是∠AOB的平分线OC上的一点,我们可以分别OA、OB在截取点M、N,使OM=ON,连结PM、PN,就可得到.
(1)请你在图①中,根据题意,画出上面叙述的全等三角形和,并加以证明.
(2)请你参考(1)中的作全等三角形的方法,解答下列问题:
(Ⅰ)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系.
(Ⅱ)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(Ⅰ)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,城南中学八年级学习小组发现:当角平分线遇上平行线会出现等腰三角形。例如:图①,在四边形ABCD中,BE平分∠ABC,AD//BC,易得△ABE是等腰三角形。该小组将此结论作拓展:如图②,四边形ABCD中, BE平分∠BCD,CF平分∠ABC ,AD//BC,AB=CD=3,AD=4,则EF=________。如图③,如图,在长方形ABCD中,AB=3,BC=5,点E在边AD上,连接BE,△EAB沿BE翻折得到△EA1B,延长交BC于点F,若四边形EFCD的周长为11,则EF=________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.
⑴若∠BAE=40°,求∠C的度数;
⑵若△ABC周长13cm,AC=6cm,求DC长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax2+2ax+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)当a>0时,如图所示,若点D是第三象限方抛物线上的动点,设点D的横坐标为m,三角形ADC的面积为S,求出S与m的函数关系式,并直接写出自变量m的取值范围;请问当m为何值时,S有最大值?最大值是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com