精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CEAB于E,设ABC=α(60°≤α<90°).

(1)当α=60°时,求CE的长;

(2)当60°<α<90°时,

是否存在正整数k,使得EFD=kAEF?若存在,求出k的值;若不存在,请说明理由.

连接CF,当CE2﹣CF2取最大值时,求tanDCF的值.

【答案】解:(1)α=60°,BC=10,sinα=,即sin60°=,解得CE=

(2)存在k=3,使得EFD=kAEF。理由如下:

连接CF并延长交BA的延长线于点G,

F为AD的中点,AF=FD。

在平行四边形ABCD中,ABCD,∴∠G=DCF。

AFG和CFD中,

∵∠G=DCF, G=DCF,AF=FD,

∴△AFG≌△CFD(AAS)。CF=GF,AG=CD。

CEAB,EF=GF。∴∠AEF=G。

AB=5,BC=10,点F是AD的中点,AG=5,AF=AD=BC=5。AG=AF。

∴∠AFG=G。

AFG中,EFC=AEF+G=2AEF,

∵∠CFD=AFG,∴∠CFD=AEF。

∴∠EFD=EFC+CFD=2AEF+AEF=3AEF,

因此,存在正整数k=3,使得EFD=3AEF。

设BE=x,AG=CD=AB=5,EG=AE+AG=5﹣x+5=10﹣x,

在RtBCE中,CE2=BC2﹣BE2=100﹣x2

在RtCEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x。

CF=GF(中已证),CF2=(CG)2=CG2=(200﹣20x)=50﹣5x。

CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣2+50+

当x=,即点E是AB的中点时,CE2﹣CF2取最大值。

此时,EG=10﹣x=10﹣,CE=

解析锐角三角函数定义,特殊角的三角函数值,平行四边形的性质,对顶角的性质,全等三角形的判定和性质,直角三角形斜边上的中线性质,等腰三角形的性质,二次函数的最值,勾股定理。

(1)利用60°角的正弦值列式计算即可得解。

(2)连接CF并延长交BA的延长线于点G,利用“角边角”证明AFG和CFD全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得AEF=G=AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得EFC=2G,然后推出EFD=3AEF,从而得解。

设BE=x,在RtBCE中,利用勾股定理表示出CE2,表示出EG的长度,在RtCEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于某一函数给出如下定义:若存在实数,当其自变量的值为时,其函数值等于,则称为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度为零.例如,图1中的函数有01两个不变值,其不变长度等于1

1)分别判断函数有没有不变值?如果有,请写出其不变长度;

2)函数,求其不变长度的取值范围;

3)记函数的图像为,将沿翻折后得到的函数图像记为,函数的图像由两部分组成,若其不变长度满足,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、AC与⊙O相切于点B、C,∠A=50°,P为⊙O上异于B、C的一个动点,则∠BPC的度数为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:

测试项目

测试成绩

专业知识

74

87

90

语言能力

58

74

70

综合素质

87

43

50

(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?

(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?

(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为xy:1,且x+y+1=10,则x   y   .(写出xy的一组整数值即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PCx轴,与二次函数y=ax(x﹣2)的图象交于点C.

(1)求a、b的值

(2)求线段PC长的最大值;

(3)若PAC为直角三角形,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形中,分别是边上的点,交于点

1)如图1,若四边形是正方形,且,求证:

2)如图2,若四边形是菱形,试探究当满足什么关系,使得

3)如图3,试判断的数量关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4分)如图,抛物线的对称轴是.且过点(0),有下列结论:abc0a﹣2b+4c=025a﹣10b+4c=03b+2c0a﹣b≥mam﹣b);其中所有正确的结论是 .(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知的半径为的两条弦,,则弦之间的距离是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+cc0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M

1)求二次函数的解析式;

2)点P为线段BM上的一个动点,过点Px轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;

3)探索:线段BM上是否存在点N,使NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案