精英家教网 > 初中数学 > 题目详情

【题目】解题时,最容易想到的方法未必是最简单的,你可以再想一想,尽量优化解法.

例题呈现

关于x的方程a(xm)2b0的解是x11x2=-2amb均为常数,a0),则方程a(xm2)2b0的解是 

解法探讨

1)小明的思路如图所示,请你按照他的思路解决这个问题;

小明的思路

第1步 把1、-2代入到第1个方程中求出m的值;

第2步 把m的值代入到第1个方程中求出的值;

第3步 解第2个方程.

2)小红仔细观察两个方程,她把第2个方程a(xm2)2b0中的“x2”看作第1个方程中的“x”,则“x2”的值为  ,从而更简单地解决了问题.

策略运用

3)小明和小红认真思考后发现,利用方程结构的特点,无需计算“根的判别式”就能轻松解决以下问题,请用他们说的方法完成解答.

已知方程 (a22b2)x2+(2b22c2)x2c2a20有两个相等的实数根,其中abc是△ABC三边的长,判断△ABC的形状.

【答案】(1)x1=-1x2=-4 21或-2 3)直角三角形

【解析】

1)根据题意利用待定系数法求解即可.

2)把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.

3)先根据有两个相等的实数根,再根据根于系数的关系列出方程,找到abc的关系,从而判断三角形的形状.

1)解:将x11x2=-2代入到方程a(xm)2b0中,

m1±(m2)

解得 m

a(1)2b0

2个方程可变形为(x2)2=-

(x)2

解得:x1=-1x2=-4

2)关于x的方程ax+m2+b=0的解是x1=-2x2=1,(amb均为常数,a≠0);

3)解:∵ (a22b2)(2b22c2)(2c2a2)0

方程必有一根是x1

方程的两根为x1x21

x1·x21

a2b2c2

ABC是一个直角三角形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACADBC垂足是DAN是∠BAC的外角∠CAM的平分线,CEAN,垂足是E,连接DEACF

1)求证:四边形ADCE为矩形;

2)求证:DFABDF

3)当△ABC满足什么条件时,四边形ADCE为正方形,简述你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),请回答下列问题:

(1)求抛物线对应的二次函数的表达式;

(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的是(  )

A.①③B.①②③④C.①②③D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程 kx2+(2k1)xk20

1)若该方程有两个不相等的实数根,求k的取值范围;

2)若该方程的两根x1x2满足=-3,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1234,乙口袋中的小球上分别标有数字234,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n

1)请用列表或画树状图的方法表示出所有(mn)可能的结果;

2)若mn都是方程x25x+60的解时,则小明获胜;若mn都不是方程x25x+60的解时,则小利获胜,问他们两人谁获胜的概率大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,MBC上一点,MEAMMEAD的延长线于点E

1)求证:△ABM ∽△EMA

2)若AB2BM1,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:PCD是等腰直角三角形,∠DPC=90°,∠APB=135°

求证:(1)△PAC∽△BPD;

(2)若AC=3,BD=1,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为  

A. 3 B. 2 C. D.

查看答案和解析>>

同步练习册答案