精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,MBC上一点,MEAMMEAD的延长线于点E

1)求证:△ABM ∽△EMA

2)若AB2BM1,求DE的长.

【答案】(1)详见解析;(2)3

【解析】

1)利用三角形两组对应角相等,可证三角形相似;

2)先用勾股定理求出AM,在根据三角形相似的性质求出AE,最后DE=AE-AD即可求解.

解:(1)∵四边形ABCD是正方形,

∴∠ABC=90°

MEAM

∴∠AME=90°,

∴∠AMB+BAM=90°,∠BAM+EAM=90°,

∴∠AMB =EAM,∠ABC=AME =90°

.∴△ABM ∽△EMA

2)∵AB2BM1

∴AM=

∵△ABM ∽△EMA

即:,解得AE=5;

又∵四边形ABCD是正方形,

AD=AB=2

∴DE=AE-AD=5-2=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图.利用一面墙(墙的长度不限),用20m的篱笆围成一个矩形场地ABCD.设矩形与墙垂直的一边ABxm,矩形的面积为Sm2

1)用含x的式子表示S

2)若面积S48m2,求AB的长;

3)能围成S60m2的矩形吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O,请用无刻度的直尺完成下列作图.

1)如图①,四边形ABCD是⊙O的内接四边形,且ABAD,画出∠BCD的角平分线;

2)如图②,ABAD是⊙O的切线,切点分别是BD,点C在⊙O上,画出∠BCD的角平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解题时,最容易想到的方法未必是最简单的,你可以再想一想,尽量优化解法.

例题呈现

关于x的方程a(xm)2b0的解是x11x2=-2amb均为常数,a0),则方程a(xm2)2b0的解是 

解法探讨

1)小明的思路如图所示,请你按照他的思路解决这个问题;

小明的思路

第1步 把1、-2代入到第1个方程中求出m的值;

第2步 把m的值代入到第1个方程中求出的值;

第3步 解第2个方程.

2)小红仔细观察两个方程,她把第2个方程a(xm2)2b0中的“x2”看作第1个方程中的“x”,则“x2”的值为  ,从而更简单地解决了问题.

策略运用

3)小明和小红认真思考后发现,利用方程结构的特点,无需计算“根的判别式”就能轻松解决以下问题,请用他们说的方法完成解答.

已知方程 (a22b2)x2+(2b22c2)x2c2a20有两个相等的实数根,其中abc是△ABC三边的长,判断△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,OAO的半径,以OA为直径的CO的弦AB相交于点D,连结OD并延长交O于点E,连结AE

1)求证:AD=DB

2)若AO=10DE=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的边OAx轴上,OCy轴上,且B的坐标为(86),动点DB点出发,以1个单位长度每秒的速度向C点运动t秒(D不与BC重合),连接AD,将△ABD沿AD翻折至△AB'DB'在矩形的内部或边上),连接DB'DB'所在直线与AC交于点F,与OA所在直线交于点E

1)①当t 秒,B'F重合;

②求线段CB'的取值范围;

2)①求EB'的长度(用含t的代数式表示),并求出t的取值范围;

②当t为何值时,△AEF是以AE为底的等腰三角形?并求出此时EC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种成本为40千克的商品,若按50千克销售,一个月可售出500千克,现打算涨价销售,据市场调查,涨价x元时,月销售量为m千克,mx的一次函数,部分数据如下表:

观察表中数据,直接写出mx的函数关系式:_______________:当涨价5元时,计算可得月销售利润是___________元;

当售价定多少元时,会获得月销售最大利润,求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx2+2x3

1)把函数配成yaxh2+k的形式;

2)求函数与x轴交点坐标;

3)用五点法画函数图象

x

y

4)当y0时,则x的取值范围为_____

5)当﹣3x0时,则y的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.

(1)该项绿化工程原计划每天完成多少米2

(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?

查看答案和解析>>

同步练习册答案