【题目】如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;
(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
【答案】(1)y=x2﹣4x﹣5(2)(,﹣);(3)P(,0),Q(0,﹣)
【解析】整体分析:
(1)用待定系数法求抛物线的解析式;(2)设H(t,t2-4t-5),用含t的代数式表示FH的长,求出CE的长,用对角线互相垂直的四边形的面积等于对角线积的一半,把四边形CHEF的面积表示为关于t的二次函数,用二次函数的性质求解;(3)作点M,K关于x轴,y轴对称点M′,K′,连接M′K′,分别交x轴,y轴于点P,Q,求出M′K′的解析式,即可得到点P,Q的坐标.
解:(1)把A(-1,0),B(5,0)代入y=ax2+bx-5得
,解得
∴二次函数的表达式为y=x2-4x-5
(2)如图2,设H(t,t2-4t-5),
∵CE||x轴,∴-5=x2-4x-5,解得,x1=0,x2=4,
∴E(4,-5),∴CE=4,
∵B(5,0),C(0,-5),
∴,
∴直线BC的解析式为y2=x-5,∴F(t,t-5),
∵CE||x轴,HF||y轴,∴CE⊥HF,
∴四边形CHEF的面积=)2+,
∴H(.
(3)如图3,
∵点K为顶点,∴K(2,-9),
∴点K关于y轴的对称点K′的坐标为(-2,-9).
∵M(4,m),∴M(4,-5),
∴点M关于x轴的对称点M′的坐标为(4,5).
设直线K′M′的解析式为y3=a3x+b3,
,∴
∴直线BC的解析式为y3=,
∴P,Q的坐标分别为P(,0),Q(0,-.
科目:初中数学 来源: 题型:
【题目】小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y1= 和y2= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:① ②阴影部分面积是(k1﹣k2)③当∠AOC=90°时,|k1|=|k2|;④若四边形OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点A表示数20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…
(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为___________;
(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2ABm×BC的值不随时间t的变化而改变,则2ABm×BC的值为_____________(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象经过点A(﹣1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.
(1)求k的值;
(2)若一次函数y=mx+n图象经过点A和反比例函数图象上另一点,且与x轴交于M点,求AM的值;
(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在另一个反比例函数上,则k'= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在正方形ABCD中,点M为BC边上一点,BM=4MC,以M为直角顶点作等腰直角三角形MEF,点E在对角线BD上,点F在正方形外EF交BC于点N,连CF,若BE=2,S△CMF=3,则MN=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了,有一种用“因式分解”法产生的密码、方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,当时,此时可以得到数字密码171920.
(1)根据上述方法,当时,对于多项式分解因式后可以形成哪些数字密码?(写出三个)
(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为x、y,求出一个由多项式分解因式后得到的密码(只需一个即可);
(3)若多项式因式分解后,利用本题的方法,当时可以得到其中一个密码为242834,求m、n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 “已知:正比例函数y1=kx(k>0)与反比例函数y2=(m>0)图象相交于A、B两点,其横坐标分别是1和﹣1,求不等式kx>的解集.”对于这道题,某同学是这样解答的:“由图象可知:当x>1或﹣1<x<0时,y1>y2,所以不等式kx>的解集是x>1或﹣1<x<0”.他这种解决问题的思路体现的数学思想方法是( )
A.数形结合 B.转化 C.类比 D.分类讨论
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC到E,使CE=AD.
(1)写出图中所有与△DCE全等的三角形,并选择其中一对说明全等的理由;
(2)探究:当梯形ABCD的高DF等于多少时,对角线AC与BD互相垂直?请回答并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com