精英家教网 > 初中数学 > 题目详情

【题目】如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;……;依次作下去,则第n个正方形AnBnCnDn的边长是________

【答案】

【解析】

OOM垂直于AB,交AB于点M,交A1B1于点N,由三角形OAB与三角形OA1B1都为等腰直角三角形,得到MAB的中点,NA1B1的中点,根据直角三角形斜边上的中线等于斜边的一半可得出OMAB的一半,由AB1求出OM的长,再由ONA1B1的一半,即为MN的一半,可得出ONOM的比值,求出MN的长,即为第1个正方形的边长,同理求出第2个正方形的边长,依此类推即可得到第n个正方形的边长.

解:过OOMAB,交AB于点M,交A1B1于点N,如图所示:

∵正方形A1B1C1D1

A1B1AB,∴ONA1B1
∵△OAB为斜边为1的等腰直角三角形,
OMAB
又∵△OA1B1为等腰直角三角形,
ONA1B1MN
ONOM13

ON=OM=
∴第1个正方形的边长A1C1MNOM×
同理第2个正方形的边长A2C2ON×
则第n个正方形AnBnDnCn的边长

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,点E是对角线BD上一点,点QAD边上一点,BQAE于点P,∠ABQ=DAE,点FAB边的中点.

1)当四边形ABCD是正方形时,如图(1).

①若BE=BA,求证:△ABP≌△EBP

②若BE=4DE,求证:AF2=AQ·AD

2)当四边形ABCD是矩形时,如图(2),连接FQFD.若BE=4DE,求证:∠AFQ=ADF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数 yax2+bx+ca≠0)的图象如图所示,对称轴是直线 x=1,下列结论:ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正确的是(

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BC=10,AB=,∠ABC=30°,点P在直线AC上,点P到直线AB的距离为1,则CP的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,平分,若,则线段的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.

(1)求这个抛物线的解析式;

(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?

(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CPCA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是__________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,为线段上一动点,且不与点重合,过点于点,将沿折叠,点落在直线上点处,连接,当为等腰三角形时,的长是_________

查看答案和解析>>

同步练习册答案