如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.如果一条直线与果圆只有一个交点,则这条直线叫做果圆的切线.已知A、B、C、D四点为果圆与坐标轴的交点,E为半圆的圆心,抛物线的解析式为y=x2﹣2x﹣3,AC为半圆的直径.
(1)分别求出A、B、C、D四点的坐标;
(2)求经过点D的果圆的切线DF的解析式;
(3)若经过点B的果圆的切线与x轴交于点M,求△OBM的面积.
![]()
![]()
【考点】圆的综合题.
【分析】(1)连接DE,根据坐标轴上点的坐标特征求出A、B、C的坐标,根据题意求出半圆的直径,根据勾股定理求出OD的长,得到点D的坐标;
(2)根据射影定理求出EF的长,得到点F的坐标,运用待定系数法求出经过点D的果圆的切线DF的解析式;
(3)根据切线的性质得到经过点B的果圆的切线与抛物线只有一个公共点,根据一元二次方程的判别式解答即可求出点M的坐标,根据三角形的面积公式计算即可.
【解答】解:(1)连接DE,
∵y=x2﹣2x﹣3,
∴x=0时,y=﹣3,
y=0时,x1=﹣1,x2=3,
∴点A的坐标为(﹣1,0),点B的坐标为(0,﹣3),点C的坐标为(3,0),
∵AC=4,
∴AE=DE=2,
∴OE=1,
∴OD=![]()
=![]()
,
∴D点的坐标为(0,![]()
);
(2)∵DF是果圆的切线,
∴ED⊥DF,又DO⊥EF,
∴DE2=EO•EF,
∴EF=4,则OF=3,
∴点F的坐标为(﹣3,0),
设经过点D的果圆的切线DF的解析式为y=kx+b,
则![]()
,
解得![]()
.
∴经过点D的果圆的切线DF的解析式为y=![]()
x+![]()
;
(3)设经过点B的果圆的切线的解析式为:y=ax+c,
∵点B的坐标为(0,﹣3),
∴经过点B的果圆的切线的解析式为:y=ax﹣3,
由题意得,方程组![]()
只有一个解,
即一元二次方程x2﹣(a+2)x=0有两个相等的实数根,
△=(a+2)2﹣4×1×0=0,
解得a=﹣2,
∴经过点B的果圆的切线的解析式为:y=﹣2x﹣3,
当y=0时,x=﹣![]()
,
∴点M的坐标为(﹣![]()
,0),即OM=![]()
,
∴△OBM的面积=![]()
×OM×OB=![]()
.
![]()
![]()
【点评】本题考查的是圆的切线的性质、待定系数法求一次函数的解析式、一元二次方程根与系数的关系以及坐标与图形的性质,灵活运用相关的定理、数形结合思想以及方程思想是解题的关键.
科目:初中数学 来源: 题型:
如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C在第一象限内的一点且∠ODB=60°,解答下列各题:
(1)求线段AB的长及⊙C的半径;
(2)求B点坐标及圆心C的坐标.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有2个完全相同的小球,分别标有数字﹣1,﹣2.现从甲袋中随机抽取一个小球,将标有的数字记录为x,再从乙袋中随机抽取一个小球,将标有的数字记录为y,确定点M的坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)求点M(x,y)在二次函数y=x2﹣2x﹣2的图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).
(1)求该二次函数的解析式;
(2)判断点C(2,﹣3)、D(﹣1,1)是否在该函数图象上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com