精英家教网 > 初中数学 > 题目详情

【题目】为了美化环境,学校准备在如图所示的矩形ABCD空地上进行绿化,规划在中间的一块四边形MNPQ上种花,其余的四块三角形上铺设草坪,要求AMANCPCQ,已知BC30米,AB42米,设ANx米,种花的面积为y1平方米,草坪面积y2平方米.

1)分别求y1y2x之间的函数关系式(不要求写出自变量的取值范围);

2)当AN的长为多少米时,种花的面积为640平方米?

3)若种花每平方米需200元,铺设草坪每平方米需100元,现设计要求种花的面积不大于640平方米,设学校所需费用W(元),求Wx之间的函数关系式,并求出学校所需费用的最大值.

【答案】1y1=-2x2+72x;(2)当AN的长为16米或20米时种花的面积为640平方米;(3W=-200x-182+190800190000.

【解析】

1)根据三角形面积公式可得y2的解析式,再用长方形面积减去y2,即可得y1的函数解析式;
2)根据题意把y1=640代入y1=-2x2+72x得关于x的方程,解方程即可得;
3)列出总费用的函数解析式,将其配方成顶点式,根据花的面积不大于640平方米可得x的范围,结合此范围根据二次函数的性质即可得函数的最大值,从而得解.

解:(1)根据题意,得y1=42×30-y2=-2x2+72x

2)根据题意,把y1=640代入y1=-2x2+72x得:-2x2+72x=640
解得:x1=16x2=20
故当AN的长为16米或20米时种花的面积为640平方米;

3)设总费用为W元,
W=200-2x2+72x+1002x2-72x+1260=-200x-182+190800
由(2)知当0x≤1620≤x≤30时,y1≤640
W=-200x-182+190800中,当x18时,Wx的增大而增大,当x18时,Wx的增大而减小,
∴当x=16时,W取得最大值,最大值W=190000
x=20时,W取得最大值,最大值W=190000
∴学校所需费用的最大值为190000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴为直线,与轴的一个交点在之间,其部分图象如图所示.则下列结论:;②;③;④为实数);是该抛物线上的点,则,正确的个数有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为12

1)求小明从点A到点D的过程中,他上升的高度;

2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52cos31°≈0.86tan31°≈0.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为3O中,AB是直径AC是弦,且AC=4.过点O作直径DEAC,垂足为点P,过点B的直线交AC的延长线和DE的延长线于点FG

(1)求线段APCB的长;

(2)若OG=9,求证:FGO的切线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知A(2,0)、B(3,1)、C(1,3).

(1)画出ABC沿x轴负方向平移2个单位后得到的△A1B1C1,并写出B1的坐标   

(2)以A1点为旋转中心,将△A1B1C1逆时针方向旋转90°得△A1B2C2,画出△A1B2C2,并写出C2的坐标   

(3)直接写出过B、B1、C2三点的圆的圆心坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,过点DDEAB于点E,点F在边CD上,CF=AE,连接AF,BF.

(1)求证:四边形BFDE是矩形;

(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格,某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示。

各等级学生平均分统计表

等级

优秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等级学生人数分布扇形统计图

1)扇形统计图中不及格所占的百分比是  ;

2)计算所抽取的学生的测试成绩的平均分;

3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.

(1)求证:DC为⊙O的切线;

(2)若∠DAB=60°,⊙O的半径为3,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)用配方法解方程:

2)已知点(50)在抛物线y=-x2(k1)xk上,求出抛物线的对称轴.

查看答案和解析>>

同步练习册答案